![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
BÀi 1
D = 4x - 10 - x2= - (x2 - 4x +10) = - (x - 2 )2 - 6
Vì - (x - 2 )2 \(\le0\)nên - (x - 2 )2 - 6 \(\le-6< 0\)
Vậy D = 4x - 10 - x2 luôn âm (dpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a)
\(x^2-2x=24\)
\(\Leftrightarrow x^2-6x+4x-24=0\)
\(\Leftrightarrow x(x-6)+4(x-6)=0\Leftrightarrow (x+4)(x-6)=0\)
\(\Rightarrow \left[\begin{matrix} x+4=0\\ x-6=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-4\\ x=6\end{matrix}\right.\)
b)
\(x^3-7x+6=0\Leftrightarrow (x^3-x)-(6x-6)=0\)
\(\Leftrightarrow x(x^2-1)-6(x-1)=0\)
\(\Leftrightarrow x(x-1)(x+1)-6(x-1)=0\)
\(\Leftrightarrow (x-1)(x^2+x-6)=0\)
\(\Leftrightarrow (x-1)(x^2-2x+3x-6)=0\)
\(\Leftrightarrow (x-1)[x(x-2)+3(x-2)]=0\)
\(\Leftrightarrow (x-1)(x-2)(x+3)=0\)
\(\Rightarrow \left[\begin{matrix} x-1=0\\ x-2=0\\ x+3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=1\\ x=2\\ x=-3\end{matrix}\right.\)
c) Xem lại đề.
d) Đặt \(x^2+x+4=a\) thì pt trở thành:
\(a^2+8ax+16x^2=0\)
\(\Leftrightarrow a^2+2.a.4x+(4x)^2=0\)
\(\Leftrightarrow (a+4x)^2=0\Rightarrow a+4x=0\)
\(\Rightarrow x^2+x+4+4x=0\)
\(\Rightarrow x(x+1)+4(x+1)=0\Leftrightarrow (x+1)(x+4)=0\)
\(\Rightarrow \left[\begin{matrix} x+4=0\rightarrow x=-4\\ x+1=0\rightarrow x=-1\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
x^2+6xy+9x^2=(x+3x)^2
b) (a-b)^2=a^2-2ab+b^2
c)(m+1/2)^2=m^2+m+1/4
a) \(x^2+6xy+9x^2=\left(x+3x\right)^2\)
b) \(\left(a-b\right)^2=a^2-2ab-b^2\)
c) \(\left(m+1\right)^2=m^2+2m+1\)
d) \(m^2-4n^4=\left(m+2n\right)\left(m-2n\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
3) \(x^2-7x+6=0\)
\(\Leftrightarrow x^2-6x-x+6=0\)
\(\Leftrightarrow x\left(x-6\right)-\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)
S=\(\left\{6;1\right\}\)
\(\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)<=>(x^2+x-3)(x^2+x-2)-12=(x-2)(x+3)(x^2+x+1)
TH1:=>x-2=0
=>x=2
TH2:x+3=0
=>x=-3
dựa vô bệt thức ta thấy
D<0=> phương trình ko có nghiệm thực
=>x=-3 hoặc 2
nhớ tick nhé
đặt x2 + x là a ta sẽ có a2 + 4a -12=0
=a2 + 6a - 2a -12=0
=a(a+6) -2(a+6)=0
(a-2)(a+6)=0
vậy a=2 và a=-6
(x2 + x)2 + 4(x2 + x) - 12 = 0
<=> x^4 + 2x^3 + x^2 + 4x^2 + 4x - 12 = 0
<=> x^4 + 2x^3 + 5x^2 + 4x - 12 = 0
<=> x^4 - x^3 + 3x^3 - 3x^2 + 8x^2 - 8x + 12x - 12 = 0
<=> x^3(x - 1) + 3x^2(x - 1) + 8x(x - 1) + 12(x - 1) = 0
<=> (x^3 + 3x^2 + 8x + 12)(x - 1) = 0
<=> (x^3 + 2x^2 + x^2 + 2x + 6x + 12)(x - 1) = 0
<=> [x^2(x + 2) + x(x + 2) + 6(x + 2)](x - 1) = 0
<=> (x^2 + x + 6)(x + 2)(x - 1) = 0
x^2 + x + 6 > 0
<=> x + 2 = 0 hoặc x - 1 = 0
<=> x = -2 hoặc x = 1