Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x+1}{15}+\frac{x+2}{16}+\frac{x+3}{17}=3\)
=> \(\left(\frac{x+1}{15}-1\right)+\left(\frac{x+2}{16}-1\right)+\left(\frac{x+3}{17}-1\right)=0\)
=> \(\frac{x-14}{15}+\frac{x-14}{16}+\frac{x-14}{17}=0\)
=> \(\left(x-14\right)\left(\frac{1}{15}+\frac{1}{16}+\frac{1}{17}\right)=0\)
=> \(x-14=0\)
=> \(x=14\)
\(\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0^2\)
\(\Leftrightarrow x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy x = 1/2
\(\left(x-2\right)^2=1\)
\(\Leftrightarrow\left(x-2\right)^2=1^2\)
\(\Leftrightarrow x-2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)
Vậy x = 3 hoặc x = 1
\(\left(2x-1\right)^3=-8\)
\(\Leftrightarrow\left(2x-1\right)^3=\left(-2\right)^3\)
\(\Leftrightarrow2x-1=-2\)
<=> 2x = -1
<=> x = -0,5
Vậy x = -0,5
\(\left(x-\frac{1}{2}\right)^2=0\)
\(x-\frac{1}{2}=0\)
\(x=\frac{1}{2}\)
\(\left(x-2\right)^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1+2\\x=-1+2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Vậy\(x\in\left\{3;1\right\}\)
\(\left(2x-1\right)^3=-8\)
\(\left(2x-1\right)^3=\left(-2\right)^3\)
\(2x-1=-2\)
\(2x=\left(-2\right)+1\)
\(2x=-1\)
\(x=-1\times2\)
\(x=-2\)
\(x\left(\frac{1}{2}\right)^2=\frac{1}{16}\)
\(x\left(\frac{1}{2}\right)^2=\left(\frac{1}{4}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x\frac{1}{2}=\frac{1}{4}\\x\frac{1}{2}=-\frac{1}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}:\frac{1}{2}\\x=-\frac{1}{4}:\frac{1}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}}\)
Với x=2 ta có B=217-216-215-...-22-2-1
B=217-(216+215+...+22+2+1)
Đặt A=216+215+...+22+2+1
2A=217+216+...+23+22+2
2A-A=217-1
A=217-1
B=217-(217-1)=217-217+1=1
\(\left(-1\frac{1}{15}\right).\left(-1\frac{1}{16}\right).\left(-1\frac{1}{17}\right).........\left(-1\frac{1}{1994}\right)\)
de the nay a dug cho 1 lik e dj
\(=\left(-\frac{16}{15}\right)\left(-\frac{17}{16}\right).....\left(-\frac{1995}{1994}\right)\)
\(=\frac{\left[\left(-16\right)\left(-17\right)....\left(-1994\right)\right]1995}{\left[16.17.....1994\right].15}=\frac{-1995}{15}=-133\)
a) |x| + |x + 1| = 1
Nếu x \(\le\) - 1
=> |x| = -x
=> |x + 1| = -(x + 1) = -x - 1
Khi đó |x| + |x + 1| = 1 (1)
<=> -x - x - 1 = 1
=> -2x = 2
=> x = -1(tm)
Nếu -1 < x < 0
=> |x| = -x
=> |x + 1| = x + 1
Khi đó (1) <=> -x + x + 1 = 1
=> 0x = 0
=> \(x\in\varnothing\)
Nếu x \(\ge\) 0
=> |x| = x
=> |x + 1| = x + 1
Khi đó (1) <=> x + x + 1 = 1
=> 2x = 0
=> x = 0 (tm)
Vậy \(x\in\left\{-1;0\right\}\)
b) |x| + |x + 1| = 2020
Nếu x \(\le\) - 1
=> |x| = -x
=> |x + 1| = -(x + 1) = -x - 1
Khi đó |x| + |x + 1| = 1 (1)
<=> -x - x - 1 = 2020
=> -2x = 2021
=> x = -1010,5(tm)
Nếu -1 < x < 0
=> |x| = -x
=> |x + 1| = x + 1
Khi đó (1) <=> -x + x + 1 = 2020
=> 0x = 2019
=> \(x\in\varnothing\)
Nếu x \(\ge\) 0
=> |x| = x
=> |x + 1| = x + 1
Khi đó (1) <=> x + x + 1 = 2020
=> 2x = 2019
=> x = 1009,5 (tm)
Vậy \(x\in\left\{-1010,5;1009,5\right\}\)
c)\(\frac{x+1}{18}+\frac{x+2}{17}=\frac{x+3}{16}+\frac{x+4}{15}\)
=> \(\left(\frac{x+1}{18}+1\right)+\left(\frac{x+2}{17}+1\right)=\left(\frac{x+3}{16}+1\right)+\left(\frac{x+4}{15}+1\right)\)
=> \(\frac{x+19}{18}+\frac{x+19}{17}=\frac{x+19}{16}+\frac{x+19}{15}\)
=> \(\frac{x+19}{18}+\frac{x+19}{17}-\frac{x+19}{16}-\frac{x+19}{15}=0\)
=> \(\left(x+19\right)\left(\frac{1}{18}+\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\right)=0\)
=> x + 19 = 0 (Vì \(\frac{1}{18}+\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\ne0\)
=> x = -19
Vậy x =-19
a) | x | + | x + 1 | = 1 (*)
+) Với x < -1
(*) <=> -x - ( x + 1 ) = 1
<=> -x - x - 1 = 1
<=> -2x - 1 = 1
<=> -2x = 2
<=> x = -1 ( không thỏa mãn )
+) Với -1 ≤ x < 0
(*) <=> -x + ( x + 1 ) = 1
<=> -x + x + 1 = 1
<=> 0 + 1 = 1 ( luôn đúng với mọi x ) (1)
+) Với ≥ 0
(*) <=> x + ( x + 1 ) = 1
<=> x + x + 1 = 1
<=> 2x + 1 = 1
<=> 2x = 0
<=> x = 0 ( thỏa mãn ) (2)
Từ (1) và (2) => Với -1 ≤ x ≤ 0 thì thỏa mãn đề bài
b) | x | + | x + 1 | = 2020 (*)
+) Với x < -1
(*) <=> - x - ( x + 1 ) = 2020
<=> -x - x - 1 = 2020
<=> -2x - 1 = 2020
<=> -2x = 2021
<=> x = -2021/2 ( thỏa mãn )
+) Với -1 ≤ x < 0
(*) <=> -x + ( x + 1 ) = 2020
<=> -x + x + 1 = 2020
<=> 0 + 1 = 2020 ( vô lí )
+) Với x ≥ 0
(*) M <=> x + ( x + 1 ) = 2020
<=> x + x + 1 = 2020
<=> 2x + 1 = 2020
<=> 2x = 2019
<=> x = 2019/2 ( thỏa mãn )
Vậy x = -2021/2 hoặc x = 2019/2
c) \(\frac{x+1}{18}+\frac{x+2}{17}=\frac{x+3}{16}+\frac{x+4}{15}\)
\(\Leftrightarrow\left(\frac{x+1}{18}+1\right)+\left(\frac{x+2}{17}+1\right)=\left(\frac{x+3}{16}+1\right)+\left(\frac{x+4}{15}+1\right)\)
\(\Leftrightarrow\frac{x+1+18}{18}+\frac{x+2+17}{17}=\frac{x+3+16}{16}+\frac{x+4+15}{15}\)
\(\Leftrightarrow\frac{x+19}{18}+\frac{x+19}{17}=\frac{x+19}{16}+\frac{x+19}{15}\)
\(\Leftrightarrow\frac{x+19}{18}+\frac{x+19}{17}-\frac{x+19}{16}-\frac{x+19}{15}=0\)
\(\Leftrightarrow\left(x+19\right)\left(\frac{1}{18}+\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\right)=0\)
Vì \(\frac{1}{18}+\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\ne0\)
\(\Rightarrow x+19=0\)
\(\Rightarrow x=-19\)
3x+751/2040=0
x=-751/6120