Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(|x|+|x+1|+|x+2|+|x+3|=6x\)
\(\Rightarrow x+x+1+x+2+x+3+x+4=6x\)
\(\Rightarrow4x+6=6x\)
\(\Rightarrow6x-4x=6\)
\(\Rightarrow x=3\)
vậy:\(x=3\)
\(A=2\left|3x-2\right|-1\ge-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow3x-2=0\Leftrightarrow x=\frac{2}{3}\)
\(B=5\left|1-4x\right|-1\ge-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow1-4x=0\Leftrightarrow x=\frac{1}{4}\)
\(\left|2x-1\right|+3=3\)
\(\left|2x-1\right|=3-3\)
\(\left|2x-1\right|=0\)
\(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
KL:....................
\(\left|x-2\right|+1=2\)
\(\left|x-2\right|=1\)
\(\Rightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
KL:........................................
Câu 3 tương tự
lát mk làm tiếp cho
Ta có: \(\hept{\begin{cases}\left|x^2-9\right|\ge0\forall x\\\left|x+3\right|\ge0\forall x\end{cases}}\)
Mà \(\left|x^2-9\right|+\left|x+3\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x^2-9\right|=0\\\left|x+3\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-9=0\\x=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2=9\\x=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm3\\x=-3\end{cases}\Rightarrow}x=-3}\)
Vậy \(x=-3\)
\(\left|x-2\right|=x-2\)
\(\Rightarrow x-2\ge0\forall x\)
\(\Rightarrow x\ge2\)
Vậy \(x\ge2\)
\(\left|x-3\right|=3-x\)
\(\Rightarrow\left|x-3\right|=-\left(x-3\right)\)
\(\Rightarrow x-3\le0\)
\(\Rightarrow x\le3\)
Vậy \(x\le3\)
a) |x| + |x + 1| = 1
Nếu x \(\le\) - 1
=> |x| = -x
=> |x + 1| = -(x + 1) = -x - 1
Khi đó |x| + |x + 1| = 1 (1)
<=> -x - x - 1 = 1
=> -2x = 2
=> x = -1(tm)
Nếu -1 < x < 0
=> |x| = -x
=> |x + 1| = x + 1
Khi đó (1) <=> -x + x + 1 = 1
=> 0x = 0
=> \(x\in\varnothing\)
Nếu x \(\ge\) 0
=> |x| = x
=> |x + 1| = x + 1
Khi đó (1) <=> x + x + 1 = 1
=> 2x = 0
=> x = 0 (tm)
Vậy \(x\in\left\{-1;0\right\}\)
b) |x| + |x + 1| = 2020
Nếu x \(\le\) - 1
=> |x| = -x
=> |x + 1| = -(x + 1) = -x - 1
Khi đó |x| + |x + 1| = 1 (1)
<=> -x - x - 1 = 2020
=> -2x = 2021
=> x = -1010,5(tm)
Nếu -1 < x < 0
=> |x| = -x
=> |x + 1| = x + 1
Khi đó (1) <=> -x + x + 1 = 2020
=> 0x = 2019
=> \(x\in\varnothing\)
Nếu x \(\ge\) 0
=> |x| = x
=> |x + 1| = x + 1
Khi đó (1) <=> x + x + 1 = 2020
=> 2x = 2019
=> x = 1009,5 (tm)
Vậy \(x\in\left\{-1010,5;1009,5\right\}\)
c)\(\frac{x+1}{18}+\frac{x+2}{17}=\frac{x+3}{16}+\frac{x+4}{15}\)
=> \(\left(\frac{x+1}{18}+1\right)+\left(\frac{x+2}{17}+1\right)=\left(\frac{x+3}{16}+1\right)+\left(\frac{x+4}{15}+1\right)\)
=> \(\frac{x+19}{18}+\frac{x+19}{17}=\frac{x+19}{16}+\frac{x+19}{15}\)
=> \(\frac{x+19}{18}+\frac{x+19}{17}-\frac{x+19}{16}-\frac{x+19}{15}=0\)
=> \(\left(x+19\right)\left(\frac{1}{18}+\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\right)=0\)
=> x + 19 = 0 (Vì \(\frac{1}{18}+\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\ne0\)
=> x = -19
Vậy x =-19
a) | x | + | x + 1 | = 1 (*)
+) Với x < -1
(*) <=> -x - ( x + 1 ) = 1
<=> -x - x - 1 = 1
<=> -2x - 1 = 1
<=> -2x = 2
<=> x = -1 ( không thỏa mãn )
+) Với -1 ≤ x < 0
(*) <=> -x + ( x + 1 ) = 1
<=> -x + x + 1 = 1
<=> 0 + 1 = 1 ( luôn đúng với mọi x ) (1)
+) Với ≥ 0
(*) <=> x + ( x + 1 ) = 1
<=> x + x + 1 = 1
<=> 2x + 1 = 1
<=> 2x = 0
<=> x = 0 ( thỏa mãn ) (2)
Từ (1) và (2) => Với -1 ≤ x ≤ 0 thì thỏa mãn đề bài
b) | x | + | x + 1 | = 2020 (*)
+) Với x < -1
(*) <=> - x - ( x + 1 ) = 2020
<=> -x - x - 1 = 2020
<=> -2x - 1 = 2020
<=> -2x = 2021
<=> x = -2021/2 ( thỏa mãn )
+) Với -1 ≤ x < 0
(*) <=> -x + ( x + 1 ) = 2020
<=> -x + x + 1 = 2020
<=> 0 + 1 = 2020 ( vô lí )
+) Với x ≥ 0
(*) M <=> x + ( x + 1 ) = 2020
<=> x + x + 1 = 2020
<=> 2x + 1 = 2020
<=> 2x = 2019
<=> x = 2019/2 ( thỏa mãn )
Vậy x = -2021/2 hoặc x = 2019/2
c) \(\frac{x+1}{18}+\frac{x+2}{17}=\frac{x+3}{16}+\frac{x+4}{15}\)
\(\Leftrightarrow\left(\frac{x+1}{18}+1\right)+\left(\frac{x+2}{17}+1\right)=\left(\frac{x+3}{16}+1\right)+\left(\frac{x+4}{15}+1\right)\)
\(\Leftrightarrow\frac{x+1+18}{18}+\frac{x+2+17}{17}=\frac{x+3+16}{16}+\frac{x+4+15}{15}\)
\(\Leftrightarrow\frac{x+19}{18}+\frac{x+19}{17}=\frac{x+19}{16}+\frac{x+19}{15}\)
\(\Leftrightarrow\frac{x+19}{18}+\frac{x+19}{17}-\frac{x+19}{16}-\frac{x+19}{15}=0\)
\(\Leftrightarrow\left(x+19\right)\left(\frac{1}{18}+\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\right)=0\)
Vì \(\frac{1}{18}+\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\ne0\)
\(\Rightarrow x+19=0\)
\(\Rightarrow x=-19\)