Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)
\(\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> 5x = 100 => x = 20
y = 12
2z = 84 => z = 42
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(.\frac{x}{10}=2\Rightarrow x=20\)
\(.\frac{y}{6}=2\Rightarrow y=12\)
\(.\frac{z}{21}=2\Rightarrow z=42\)
Vậy............
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
suy ra \(\frac{5x}{50}=2\Rightarrow5x=100\Rightarrow x=20\)
\(\frac{y}{6}=2\Rightarrow y=12\)
\(\frac{2x}{42}=2\Rightarrow2x=84\Rightarrow x=42\)
Ta có
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
áp dụng tính chất DTSBN ta có
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(+>\frac{x}{10}=2=>x=20\)
\(+>\frac{y}{6}=2=>y=12\)
\(+>\frac{z}{21}=2=>z=42\)
ti ck nha
a) Giải:
Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)
\(\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{-28}{14}=-2\)
+) \(\frac{5x}{50}=-2\Rightarrow x=-20\)
+) \(\frac{y}{6}=-2\Rightarrow y=-12\)
+) \(\frac{2z}{42}=-2\Rightarrow z=-42\)
Vậy x = -20, y = -12, z = -42
b) Giải:
Ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y-z}{10+15-21}=\frac{32}{4}=8\)
+) \(\frac{x}{10}=8\Rightarrow x=80\)
+) \(\frac{y}{15}=8\Rightarrow y=120\)
+) \(\frac{z}{21}=8\Rightarrow z=168\)
Vậy x = 80, y = 120, z = 168
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)
\(\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tính chất cảu dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=-\frac{28}{14}=-2\)
\(\Rightarrow\begin{cases}\frac{x}{10}=-2\rightarrow x=\left(-2\right)\cdot10=-20\\\frac{y}{6}=-2\rightarrow y=\left(-2\right)\cdot6=-12\\\frac{z}{21}=-2\rightarrow z=\left(-2\right)\cdot21=-42\end{cases}\)
b) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y-z}{10+15-21}=\frac{32}{4}=8\)
\(\Rightarrow\begin{cases}\frac{x}{10}=8\rightarrow x=8\cdot10=80\\\frac{y}{15}=8\rightarrow y=8\cdot15=120\\\frac{z}{21}=8\rightarrow z=8\cdot21=168\end{cases}\)
\(\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> x = 20
y = 12
z = 42
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{10.5+6-2.21}=\frac{28}{14}=2\)
- \(\frac{x}{10}=2.10=20\)
- \(\frac{y}{6}=2.6=12\)
- \(\frac{z}{21}=2.21=42\)
Vậy x=20,y=12,z=42
mk nhé bạn ^...^ ^_^
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=>\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> 5x=50.2=100, y=6.2=12, 2z=42.2=84
=> x=20, y=12, z= 42
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{5.10+6-2.21}=\frac{28}{14}=2\)
suy ra:
\(\frac{x}{10}=2\Rightarrow x=2.10=20\)
\(\frac{y}{6}=2\Rightarrow x=2.6=12\)
\(\frac{z}{21}=2\Rightarrow z=2.21=42\)
Ta có :\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Lại có 5x + y - 2z = 28
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}x=20\\y=12\\z=42\end{cases}}\)
\(\hept{\begin{cases}\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\\5x+y-2z=28\end{cases}}\Rightarrow\hept{\begin{cases}\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\\5x+y-2z=28\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\Rightarrow\hept{\begin{cases}x=20\\y=12\\z=42\end{cases}}\)