\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) và 5x+y-2z=-28

b. 3x=2y;7y=5z và x+y-z...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

a) Giải:

Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)

\(\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{-28}{14}=-2\)

+) \(\frac{5x}{50}=-2\Rightarrow x=-20\)

+) \(\frac{y}{6}=-2\Rightarrow y=-12\)

+) \(\frac{2z}{42}=-2\Rightarrow z=-42\)

Vậy x = -20, y = -12, z = -42

b) Giải:

Ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\) 

           \(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y-z}{10+15-21}=\frac{32}{4}=8\)

+) \(\frac{x}{10}=8\Rightarrow x=80\)

+) \(\frac{y}{15}=8\Rightarrow y=120\)

+) \(\frac{z}{21}=8\Rightarrow z=168\)

Vậy x = 80, y = 120, z = 168

21 tháng 9 2016

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)

\(\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)

Áp dụng tính chất cảu dãy tỉ số bằng nhau ta có:

\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=-\frac{28}{14}=-2\)

\(\Rightarrow\begin{cases}\frac{x}{10}=-2\rightarrow x=\left(-2\right)\cdot10=-20\\\frac{y}{6}=-2\rightarrow y=\left(-2\right)\cdot6=-12\\\frac{z}{21}=-2\rightarrow z=\left(-2\right)\cdot21=-42\end{cases}\)

b) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y-z}{10+15-21}=\frac{32}{4}=8\)

\(\Rightarrow\begin{cases}\frac{x}{10}=8\rightarrow x=8\cdot10=80\\\frac{y}{15}=8\rightarrow y=8\cdot15=120\\\frac{z}{21}=8\rightarrow z=8\cdot21=168\end{cases}\)

6 tháng 10 2019

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) =>\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy ...

ê nhỏ tự túc đê

12 tháng 2 2018

a/

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)\(=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)\(\Rightarrow x=20;y=12;z=42\)

12 tháng 2 2018

b/\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3};7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+20}=2\)

\(\Rightarrow x=20;y=30;z=42\)

28 tháng 5 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta được : 

28 tháng 5 2018

a) ) Ta có:\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\) 

Suy ra: \(\frac{5x}{50}=2\Rightarrow5x=100\Rightarrow x=20\)

\(\frac{y}{6}=2\Rightarrow y=12\)

\(\frac{2z}{42}=2\Rightarrow2z=84\Rightarrow z=42\)

b) 3x=2y, 7y=5z \(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

Suy ra: \(\frac{x}{10}=2\Rightarrow x=20\)

\(\frac{y}{15}=2\Rightarrow y=30\)

\(\frac{z}{21}=2\Rightarrow z=42\)

c) \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{12}=\frac{z}{20}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\Rightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\) 

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\Rightarrow\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

Suy ra: \(\frac{2x}{18}=3\Rightarrow2x=54\Rightarrow x=27\)

\(\frac{3y}{36}=3\Rightarrow3y=108\Rightarrow y=36\)

\(\frac{z}{20}=3\Rightarrow z=60\)

29 tháng 10 2017

a) x/5=y/2

= x+y/5+2=21/7=3

=> x/5=3=>x=15

    y/2=3=>x=6

29 tháng 10 2017

1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)

\(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)

\(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)

c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)

*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)

*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)

31 tháng 8 2021

\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)

Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)

Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)

\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)

Lại có : \(2x+3y-z=186\)

Thay vào ta có :

\(2.15k+3.20k-28k=186\)

\(30k+60k-28k=186\)

\(62k=186\)

\(k=3\)

Thay vào ta được :

\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)

Vậy .....

25 tháng 4 2024

1) Tìm x, biết:

a) x:2=y:5 và x+y=21

b) x2=y2𝑥2=𝑦2và x.y=54

c) x:7=y:5 và y-x=12

2) Tím các số x, y, z, biết:

a) x10=y6=z21𝑥10=𝑦6=𝑧21và 5x+y-2z=28

b) x3=y4𝑥3=𝑦4y5=z7𝑦5=𝑧7và 2x+3y-z=124

c) 3x=2y; 7y=5z và x-y+z=32

d) 2x=3x=5z và x+y-z=95

5 tháng 9 2017

a) \(\frac{x}{10}\)\(\frac{y}{6}\)\(\frac{z}{21}\) và 5x + y - 2z =28

\(\Rightarrow\)\(\frac{5x}{50}\)\(\frac{y}{6}\)\(\frac{2z}{42}\) và 5x + y - 2z=28

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{5x}{50}\)\(\frac{y}{6}\)\(\frac{2z}{42}\)\(\frac{5x+y-2z}{50+6-42}\)\(\frac{28}{14}\)=2

Suy ra:      \(\frac{x}{10}\)\(2\)\(\Rightarrow\)x=20

                  \(\frac{y}{6}\)= 2\(\Rightarrow\)y=12

                   \(\frac{z}{21}\)= 2\(\Rightarrow\)z=42

Vậy...

Hai câu b,c làm tương tự nhé

d) \(\frac{3}{x}\)\(\frac{2}{y}\)\(\frac{7}{y}\)\(\frac{5}{z}\) và x-y+z=32

\(\frac{y}{3}\)\(\frac{x}{2}\)\(\frac{z}{7}\)\(\frac{y}{5}\) và x-y+z=32

\(\frac{y}{15}\)\(\frac{x}{10}\)\(\frac{z}{21}\)\(\frac{y}{15}\) và x-y+z=32

\(\frac{y}{15}\)\(\frac{x}{10}\)\(\frac{z}{21}\) và x-y+z=32

........

1 tháng 11 2017

\(\hept{\begin{cases}\\\end{cases}swss}\)

23 tháng 6 2015

a)ta có: x/10 = y/6 = z/21=>5x/50=y/6=2z/42

áp dụng tính chất của dãy tỉ số = nhau ta có:

5x/50=y/6=2z/42=5x+y-2z/50+6-42=28/14=2

suy ra: 5x/50=2=>5x=100=>x=20

y/6=2=>y=12

2z/42=2=>84=>z=42

b)3x = 2y ; 7y = 5z

=>x/2=y/3;y/5=z/7

=>x/10=y/15;y/15=z/21

=>x/10=y/15=z/21

áp dụng tính chất của dãy tỉ số = nhau ta có:

x/10=y/15=z/21=x-y+z/10-15+21=32/16=2

suy ra :

x/10=2=>x=20

y/15=2=>y=30

z/21=2=>z=42

c) x/3 = y/4 ; y/3 = z/5

=>x/9=y/12;y/12=z/20

=>x/9=y/12=z/20

=>2x/18=3y/36=z/20

áp dụng tính chất của dãy tỉ số = nhau ta có:

2x/18=3y/36=z/20=2x-3y+z/18-36+20=6/2=3

suy ra 

2x/18=3=>2x=54=>x=27

3y/36=3=>3y=108=>y=36

z/20=3=>z=60

d)2x/3 = 3y/4 = 4z/5

=>12x/18=12y/16=12z/15

áp dụng tính chất của dãy tỉ số = nhau ta có:

12x/18=12y/16=12z/15=12x+12y+12z/18+16+15=12(x+y+z)/49=49/49=12

suy ra 

12x/18=12=>12x=216=>x=18

12y/16=12=>12y=192=>y=16

12z/15=12=>12z=180=>z=15

d)đặt x-1/2=y-2/3=z-3/4=k

=>x=2k+1

y=3k+2

z=4k+3

thay x=2k+1;y=3k+2;z=4k+3 vào 2x+3x-z=50 ta được:

2(2k+1)+3(3k+2)-(4k+3)=50

4k+2+9k+6-4k-3=50

9k+5=50

9k=45

k=5

=>x=2k+1=2.5+1=11

y=3k+2=3.5+2=17

z=4k+3=4.5+3=23

23 tháng 6 2015

đặt x-1/2=y-2/3=z-3/4=k

=> x=2K+1, y=3k+2, z=4k+3

=>2x+3y-z=4K+2+9k+6-4k-3=9K+5=50

=>K=5

=>x=11, y=17, z=23

chúc học tốt nhé!

22 tháng 6 2015

b) 3x = 2y

=>  x/2 = y/3      (1)

7y = 5z

=> y/5 = z/7       (2)

Từ (1) và (2), có:

     \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng tính chất của dãy tỉ số bằng nhau, có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

x/10 = 2            => x = 2 x 10 =20

y/15 = 2            => y = 2 x 15 = 30

z/21 = 2            => z = 2 x 21 = 42

25 tháng 8 2019

Bài 26:

a) Tương tự như câu trên mình làm ý.

c) Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}.\)

=> \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)\(5x+y-2z=28.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2.\)

\(\left\{{}\begin{matrix}\frac{x}{10}=2=>x=2.10=20\\\frac{y}{6}=2=>y=2.6=12\\\frac{z}{21}=2=>z=2.21=42\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(20;12;42\right).\)

Chúc bạn học tốt!

25 tháng 8 2019

Cái này là áp dụng dãy tỉ số bằng nhau