\(\sqrt{x1}\) +...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2020

Ta có: \(x_1+x_2=2702\) và \(x_1.x_2=1\) ( theo định lí viet)

Ta tính: \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=2702+2=2704\)

=> \(\sqrt{x_1}+\sqrt{x_2}=52\)

Ta tính: \(\left(\sqrt[3]{x_1}+\sqrt[3]{x_2}\right)^3=x_1+x_2+3\sqrt[3]{x_1x_2}\left(\sqrt[3]{x_1}+\sqrt[3]{x_2}\right)\)

Đặt: \(\left(\sqrt[3]{x_1}+\sqrt[3]{x_2}\right)=t\)

ta có phương trình: \(t^3-3t-2702=0\)<=> t = 14 

=> \(\left(\sqrt[3]{x_1}+\sqrt[3]{x_2}\right)=14\)

=> M = 52 + 14 = 66

AH
Akai Haruma
Giáo viên
23 tháng 5 2018

Lời giải:

Áp dụng định lý Viete cho pt bậc 2 ta có:

\(\left\{\begin{matrix} x_1+x_2=3\\ x_1x_2=1\end{matrix}\right.\)

Khi đó:

\(A=x_1\sqrt{x_1}+x_2\sqrt{x_2}=(\sqrt{x_1})^3+(\sqrt{x_2})^3\)

\(=(\sqrt{x_1}+\sqrt{x_2})(x_1-\sqrt{x_1x_2}+x_2)\)

\(=\sqrt{(\sqrt{x_1}+\sqrt{x_2})^2}(x_1+x_2-\sqrt{x_1x_2})\)

\(=\sqrt{x_1+x_2+2\sqrt{x_1x_2}}(x_1+x_2-\sqrt{x_1x_2})\)

\(=\sqrt{3+2}(3-1)=2\sqrt{5}\)

25 tháng 5 2018

∆=9-4=5

x1=(3+√5)/2; x2=(3-√5)/2

4x1=(√5+1)^2; 4x2=(√5-1)^2

4.A=(3+√5)(√5+1)+(3-√5)(√5-1)

=(4√5+3+5)+(4√5-3-5)=8√5

A=2√5

11 tháng 3 2018

Dùng định lí Viète vào pt cho ta:
\(\left\{{}\begin{matrix}S=x_1+x_2=2\\P=x_1x_2=\dfrac{1}{3}\end{matrix}\right.\)

a) \(A=\left(x_1-1\right)\left(x_2-1\right)=x_1x_2-\left(x_1+x_2\right)+1=-\dfrac{2}{3}\)

b)\(B=x_1\left(x_2-1\right)+x_2\left(x_1-1\right)=2x_1x_2-\left(x_1+x_2\right)=-\dfrac{4}{3}\)

c)\(C=\sqrt{x_1}+\sqrt{x_2}=\sqrt{\left(\sqrt{x_1}+\sqrt{x_2}\right)^2}=\sqrt{x_1+x_2+2\sqrt{x_1x_2}}=\sqrt{2+2\sqrt{\dfrac{1}{3}}}\)

Tới đó hết giải được tiếp :)
d)\(D=x_1\sqrt{x_2}+x_2\sqrt{x_1}=\sqrt{x_1x_2}.\left(\sqrt{x_1}+\sqrt{x_2}\right)\) rồi thế kết quả câu C và biểu thức từ trên.

a: \(\left|x_1-x_2\right|=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{\left(\dfrac{1}{2}\right)^2-4\cdot\left(-1\right)}=\sqrt{\dfrac{1}{4}+4}\)

\(=\sqrt{\dfrac{17}{4}}\)

=>\(\left[{}\begin{matrix}x_1-x_2=\dfrac{\sqrt{17}}{2}\\x_1-x_2=-\dfrac{\sqrt{17}}{2}\end{matrix}\right.\)

c,d:Vì pt có hai nghiệm trái dấu

nên chắc chắn hai biểu thức này sẽ không tính được vì sẽ có một căn bậc hai mà biểu thức trong căn âm

NV
14 tháng 5 2019

Để pt có 2 nghiệm dương pb:

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(2m+5\right)^2-4\left(2m-1\right)>0\\x_1+x_2=2m+5>0\\x_1x_2=2m-1>0\end{matrix}\right.\) \(\Rightarrow m>\frac{1}{2}\)

\(P=\left|\sqrt{x_1}-\sqrt{x_2}\right|\Leftrightarrow P^2=x_1+x_2-2\sqrt{x_1x_2}\)

\(\Rightarrow P^2=2m+5-2\sqrt{2m-1}=2m-1-2\sqrt{2m-1}+1+4\)

\(\Rightarrow P^2=\left(\sqrt{2m-1}-1\right)^2+4\ge4\)

\(\Rightarrow P\ge2\Rightarrow P_{min}=2\) khi \(\sqrt{2m-1}=1\Leftrightarrow m=1\)

4 tháng 8 2015

Để pt có nghiệm thì \(\Delta'=m^2-4\ge0\Leftrightarrow m^2\ge4\)

Khi đó, ta có: \(x_1+x_2=-2m;\text{ }x_1.x_2=4\)

Ở cả 2 câu a, b; đều cần thêm điều kiện là 2 nghiệm của pt dương

Điều đó xảy ra khi: \(x_1+x_2=-2m>0;\text{ }x_1.x_2=4>0\Leftrightarrow m<0\)

\(a\text{) }\sqrt{x_1}+\sqrt{x_2}=\sqrt{\left(\sqrt{x_1}+\sqrt{x_2}\right)^2}=\sqrt{x_1+x_2+2\sqrt{x_1x_2}}=\sqrt{-2m+2\sqrt{4}}\)

\(b\text{) }\sqrt[4]{x_1}.\sqrt[4]{x_2}=\sqrt[4]{x_1.x_2}=\sqrt[4]{4}\)

18 tháng 6 2015

bài 1: pt (2) hình như có vấn đề

b) \(x^4-7x^2+6=0\Leftrightarrow x^4-x^2-6x^2+6=0\Leftrightarrow\left(x^2-1\right)\left(x^2-6\right)=0\)

=> x^2-1=0 <=> x=+-1 hoặc x^2-6=0 <=> x=+-6 

bài 2: ĐK: x >0 và x khác 1

\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}=\frac{\sqrt{x}\left(\sqrt{x^3}-1\right)}{x+\sqrt{x}+1}-\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-2+2\sqrt{x}+2=\sqrt{x}\left(\sqrt{x}-1\right)\)

b)  ví x>0 => \(\sqrt{x}-1>-1\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)>-1\)=> k tìm đc Min

c) \(\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{2}{\sqrt{x}-1}\)

để biểu thức này nguyên => \(\sqrt{x}-1\inƯ\left(2\right)\Leftrightarrow\sqrt{x}-1\in\left(+-1;+-2\right)\)

\(\sqrt{x}-1\)1-12-2
x4(t/m)0(k t/m)9(t/m)PTVN

 

=> x thuộc (4;9)

bìa 3: câu này bạn đăng riêng mình làm rồi đó

 

NV
29 tháng 5 2020

a/ Bạn tự giải

b/ \(\Delta'=m^2+1>0;\forall m\)

Để biểu thức đề bài xác định \(\Leftrightarrow\) pt có 2 nghiệm không âm

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)>0\\x_1x_2=2m\ge0\end{matrix}\right.\) \(\Rightarrow m\ge0\)

\(\sqrt{x_1}+\sqrt{x_2}=\sqrt{2}\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=2\)

\(\Leftrightarrow2\left(m+1\right)+2\sqrt{2m}=2\)

\(\Leftrightarrow\sqrt{2m}=-m\)

Vế trái không âm, vế phải không dương, dấu "=" xảy ra khi và chỉ khi \(m=0\)