Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3 3/4 . x = 1 1/2
<=> 15/4 . x = 3/2
<=> x = 3/4 . 4/15
<=> x = 1/5
Vậy x = 1/5
b) 1 1/4 x + 1 1/2 = 1 1/4
<=> 5/4 . x + 3/2 = 5/4
<=> 5/4 . x = 5/4 - 3/2
<=> 5/4 . x = -1/4
<=> x = -1/4 . 4/5
<=> x = -1/5
Vậy x = -1/5
c) ( 3 1/3 - 1 1/2 x ) : 5/6 = 1 1/2
<=> ( 10/3 - 3/2 x ) : 5/6 = 3/2
<=> 10/3 - 3/2 x = 3/2 . 5/6
<=> 10/3 - 3/2 x = 5/4
<=> 3/2 . x = 10/3 - 5/4
<=> 3/2 . x = 25/12
<=> x = 25/12 . 2/3
<=> x = 25/18
Vậy x = 25/18
d) ( 3/7 x - 1 ) : 4 = -1/28
<=> 3/7 . x - 1 = -1/28 . 1/4
<=> 3/7 . x - 1 = -1/112
<=> 3/7 . x = -1/112 + 1
<=> 3/7 . x = 111/112
<=> x = 111/112 . 7/3
<=> x = 37/16
Vậy x = 37/16
e) | x - 3/4 | = 1
<=> x - 3/4 = 1
hoặc x - 3/4 = -1
<=> x = 1 + 3/4
hoặc x = -1 + 3/4
<=> x = 7/4
hoặc x = -1/4
Vậy x = 7/4 ; x = -1/4
f) | 2/3 . x + 1/3 | = 5/6
<=> 2/3 . x + 1/3 = 5/6
hoặc 2/3 . x + 1/3 = -5/6
<=> 2/3 . x = 5/6 - 1/3
hoặc 2/3 . x = -5/6 - 1/3
<=> 2/3 . x = 1/2
hoặc 2/3 . x = -7/6
<=> x = 1/2 . 3/2
hoặc x = -7/6 . 3/2
<=> x = 3/4
hoặc x = -7/4
Vậy x = 3/4 ; x = -7/4
a) \(\left(3x-1\right).\left(\frac{-1}{2}x+5\right)=0\)
\(\Rightarrow3x-1=0\Rightarrow3x=1\Rightarrow x=\frac{1}{3}\)
\(\frac{-1}{2}x+5=0\Rightarrow\frac{-1}{2}x=-5\Rightarrow x=10\)
b) \(3\left(x-\frac{1}{2}\right)-5\left(x+\frac{3}{5}\right)=x+\frac{1}{5}\)
\(3x-\frac{3}{2}-5x-3=x+\frac{1}{5}\)
\(\Rightarrow3x-5x-x=\frac{1}{5}+\frac{3}{2}+3\)
\(-3x=\frac{47}{10}\)
\(x=\frac{-47}{30}\)
c) \(-5.\left(x+\frac{1}{5}\right)-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)
\(-5x-1-\frac{1}{2}x+\frac{1}{3}=\frac{3}{2}x-\frac{5}{6}\)
\(-5x-\frac{1}{2}x-\frac{3}{2}x=\frac{-5}{6}+1-\frac{1}{3}\)
\(-7x=\frac{-1}{6}\)
\(x=\frac{1}{42}\)
d) \(3.\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(3.\left(3x-\frac{1}{2}\right)^3=\frac{-1}{9}\)
\(\left(3x-\frac{1}{2}\right)^3=\frac{-1}{27}\)
\(\left(3x-\frac{1}{2}\right)^3=\left(\frac{-1}{3}\right)^3\)
\(\Rightarrow3x-\frac{1}{2}=\frac{-1}{3}\)
\(3x=\frac{1}{6}\)
\(x=\frac{1}{18}\)
Học tốt nhé bn!
\(-5\left(x+\frac{1}{5}\right)-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)
\(\Leftrightarrow-5x-\frac{1}{5}-\frac{1}{2}x+\frac{1}{3}=\frac{3}{2}x-\frac{5}{6}\)
\(\Leftrightarrow\left(-5x-\frac{1}{2}x\right)+\left(\frac{1}{3}-\frac{1}{5}\right)=\frac{3}{2}x-\frac{5}{6}\)
\(\Leftrightarrow\left(\frac{-10}{2}x-\frac{1}{2}x\right)+\left(\frac{5}{15}-\frac{3}{15}\right)=\frac{3}{2}x-\frac{5}{6}\)
\(\Leftrightarrow\frac{-11}{2}x+\frac{2}{15}=\frac{3}{2}x-\frac{5}{6}\)
\(\Leftrightarrow\frac{-11}{2}x-\frac{3}{2}x=-\frac{5}{6}-\frac{2}{15}\)
\(\Leftrightarrow\frac{-14}{2}x=-\frac{25}{30}-\frac{4}{30}\)
\(\Leftrightarrow-7x=-\frac{29}{30}\)
\(\Leftrightarrow x=-\frac{29}{30}\times\frac{-1}{7}\)
\(\Leftrightarrow x=\frac{29}{210}\)
\(3\left(x-\frac{1}{2}\right)-5\left(x+\frac{3}{5}\right)=-x+\frac{1}{5}\)
\(\Leftrightarrow3x-\frac{3}{2}-5x-3=\frac{1}{5}-x\)
\(\Leftrightarrow\left(3x-5x\right)-\left(\frac{3}{2}+3\right)=\frac{1}{5}-x\)
\(\Leftrightarrow-2x-\left(\frac{3}{2}+\frac{6}{2}\right)=\frac{1}{5}-x\)
\(\Leftrightarrow-2x-\frac{9}{2}=\frac{1}{5}-x\)
\(\Leftrightarrow-2x+x=\frac{1}{5}+\frac{9}{2}\)
\(\Leftrightarrow-x=\frac{2}{10}+\frac{45}{10}\)
\(\Leftrightarrow-x=\frac{47}{10}\)
\(\Leftrightarrow x=\frac{-47}{10}\)
Chị sẽ giúp em nốt mấy bài này, em còn nhận ra chị ko vậy?
\(A=\frac{2}{1x2}+\frac{2}{2x3}+\frac{2}{3x4}+...+\frac{2}{99x101}\)
\(A=2x\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{99x101}\right)\)
\(A=2x\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=2x\left(1-\frac{1}{101}\right)=2x\frac{100}{101}=\frac{200}{101}\)
------------------------------
\(B=\left(1+\frac{1}{2}\right)x\left(1+\frac{1}{3}\right)x\left(1+\frac{1}{4}\right)x...x\left(1+\frac{1}{2016}\right)\)
\(B=\frac{3}{2}x\frac{4}{3}x\frac{5}{4}x...x\frac{2017}{2016}\) (rút gọn từ trên tử xuống dưới mẫu nhé)
\(B=\frac{2017}{2}\)
-------------------------------
\(C=\frac{3}{1x4}+\frac{3}{4x7}+\frac{3}{7x10}+...+\frac{3}{64x67}\)
\(C=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{64}-\frac{1}{67}\)
\(C=1-\frac{1}{67}=\frac{67}{67}-\frac{1}{67}=\frac{66}{67}\)
--------------------------------
\(D=\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x...x\left(1-\frac{1}{20}\right)\)
\(D=\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x...x\frac{19}{20}\)(chỗ này cũng rút gọn từ trên tử xuống dưới mẫu)
\(D=\frac{1}{20}\)
\(\dfrac{\left(x+1\right)}{3}=\dfrac{3}{\left(x+1\right)}\)
\(\left(x+1\right)^2=3\cdot3=9\)
\(\left(x+1\right)^2=\left(\pm3\right)^2\)
\(\Rightarrow x+1=\pm3\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3-1=2\\x=-3-1=-4\end{matrix}\right.\)
Vậy: \(x\in\left\{-4;2\right\}\)
Nếu x + 1 > 3 ⇒ \(\dfrac{x+1}{3}>1;\dfrac{3}{x+1}< 1\) . Khi đó \(\dfrac{x+1}{3}\ne\dfrac{3}{x+1}\) ( loại )
Nếu x + 1 < 3 ⇒ \(\dfrac{x+1}{3}< 1;\dfrac{3}{x+1}>1\) . Khi đó \(\dfrac{x+1}{3}\ne\dfrac{3}{x+1}\) ( loại )
Nếu x + 1 = 3 \(\Rightarrow\dfrac{x+1}{3}=\dfrac{3}{x+1}=1\) ⇒ x = 2
Vậy x = 2 thì \(\dfrac{x+1}{3}=\dfrac{3}{x+1}\)