K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2021

\(\dfrac{x+1}{2x+1}=\dfrac{3}{5}\)

\(5\left(x+1\right)=3\left(2x+1\right)\)

\(5x+5=6x+3\)

\(5x+5-6x-3=0\)

\(-x+2=0\)

\(-x=-2\)

\(x=2\)

22 tháng 6 2017

1, \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=5\)

\(\Leftrightarrow4x^2+12x+9-4x^2-1=5\)

\(\Leftrightarrow12x=-3\)

\(\Leftrightarrow x=\dfrac{-1}{4}\)

Vậy \(x=\dfrac{-1}{4}\)

2, \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+5\right)=20\)

\(\Leftrightarrow x^3+27-x^3-5x=20\)

\(\Leftrightarrow5x=7\)

\(\Leftrightarrow x=\dfrac{7}{5}\)

Vậy...

5, \(x^2-9+5\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)+5\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-3+5\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)

Vậy...

22 tháng 6 2017

1) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=5\) (1)

\(\Leftrightarrow4x^2+12x+9-\left(4x^2-1\right)=5\)

\(\Leftrightarrow4x^2+12x+9-4x^2+1=5\)

\(\Leftrightarrow12x+10=5\)

\(\Leftrightarrow12x=5-10\)

\(\Leftrightarrow12x=-5\)

\(\Leftrightarrow x=-\dfrac{5}{12}\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{-\dfrac{5}{12}\right\}\)

2) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+5\right)=20\) (2)

\(\Leftrightarrow x^3+27-x^3-5x=20\)

\(\Leftrightarrow27-5x=20\)

\(\Leftrightarrow-5x=20-27\)

\(\Leftrightarrow-5x=-7\)

\(\Leftrightarrow x=\dfrac{7}{5}\)

Vậy tập nghiệm phương trình (2) là \(S=\left\{\dfrac{7}{5}\right\}\)

3) \(\left(x+2\right)^3-x\left(x^2+6x\right)=15\) (3)

\(\Leftrightarrow x^3+6x^2+12x+8-x^3-6x^2=15\)

\(\Leftrightarrow12x+8=15\)

\(\Leftrightarrow12x=15-8\)

\(\Leftrightarrow12x=7\)

\(\Leftrightarrow x=\dfrac{7}{12}\)

Vậy tập nghiệm phương trình (3) là \(S=\left\{\dfrac{7}{12}\right\}\)

4) \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+10\right)\left(x-1\right)=7\) (4)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x\left(x+10\right)\right)=7\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x^2-10x\right)=7\)

\(\Leftrightarrow\left(x-1\right)\left(-9x+1\right)=7\)

\(\Leftrightarrow-9x^2+x+9x-1=7\)

\(\Leftrightarrow-9x^2+10-1=7\)

\(\Leftrightarrow-9x^2+10x-1-7=0\)

\(\Leftrightarrow-9x^2+10x-8=0\)

\(\Leftrightarrow9x^2-10x+8=0\)

\(\Leftrightarrow x\notin R\)

5) \(x^2-9+5\left(x+3\right)=0\) (5)

\(\Leftrightarrow x^2-9+5x+15=0\)

\(\Leftrightarrow x^2+5x+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+1}{2}\\x=\dfrac{-5-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)

Vậy tập nghiệm phương trình (5) là \(S=\left\{-3;-2\right\}\)

`@` `\text {Ans}`

`\downarrow`

\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\)

`=> (x-3)5 = (2x+1)3`

`=> 5x-15 = 6x+3`

`=> 5x-6x = 15+3`

`=> -x=18`

`=> x=-18`

\(\dfrac{x+1}{22}=\dfrac{6}{x}\)

`=> (x+1)x = 22*6`

`=> (x+1)x = 132`

`=> x^2 + x = 132`

`=> x^2+x-132=0`

`=> (x-11)(x+12)=0`

`=>`\(\left[{}\begin{matrix}x-11=0\\x+12=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=11\\x=-12\end{matrix}\right.\)

\(\dfrac{2x-1}{2}=\dfrac{5}{x}\)

`=> (2x-1)x = 2*5`

`=> 2x^2 - x =10`

`=> 2x^2 - x - 10 =0`

`=> 2x^2 + 4x - 5x - 10 =0`

`=> (2x^2 + 4x) - (5x+10)=0`

`=> 2x(x+2) - 5(x+2)=0`

`=> (2x-5)(x+2)=0`

`=>`\(\left[{}\begin{matrix}2x-5=0\\x+2=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}2x=5\\x=-2\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-2\end{matrix}\right.\)

\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\)

`=> (2x-1)(2x+1)=21*3`

`=> 4x^2 + 2x - 2x - 1 = 63`

`=> 4x^2 - 1=63`

`=> 4x^2 - 1 - 63=0`

`=> 4x^2 - 64 = 0`

`=> 4(x^2 - 16)=0`

`=> 4(x^2 + 4x - 4x - 16)=0`

`=> 4[(x^2+4x)-(4x+16)]=0`

`=> 4[x(x+4)-4(x+4)]=0`

`=> 4(x-4)(x+4)=0`

`=>`\(\left[{}\begin{matrix}x-4=0\\x+4=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

\(\dfrac{2x+1}{9}=\dfrac{5}{x+1}\)

`=> (2x+1)(x+1) = 9*5`

`=> (2x+1)(x+1)=45`

`=> 2x^2 + 2x + x + 1 = 45`

`=> 2x^2 + 3x + 1 =45`

`=> 2x^2 + 3x + 1 - 45 =0`

`=> 2x^2+3x-44=0`

`=> 2x^2 + 11x - 8x - 44=0`

`=> (2x^2 +11x) - (8x+44)=0`

`=> x(2x+11) - 4(2x+11)=0`

`=> (x-4)(2x+11)=0`

`=>`\(\left[{}\begin{matrix}x-4=0\\2x+11=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=4\\2x=-11\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=4\\x=-\dfrac{11}{2}\end{matrix}\right.\)

15 tháng 6 2023

\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\\ \left(x-3\right)\cdot5=\left(2x+1\right)\cdot3\\ x5-15=6x+3\\ x5-6x=3+15\\ -x=18\\ \Rightarrow x=-18\)

\(\dfrac{x+1}{22}=\dfrac{6}{x}\\ \left(x+1\right)\cdot x=6\cdot22\\ \left(x+1\right)\cdot x=2\cdot3\cdot2\cdot11\\ \left(x+1\right)\cdot x=12\cdot11\\ \Rightarrow x=11\)

\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\\ \left(2x-1\right)\cdot\left(2x+1\right)=21\cdot3\\ \left(2x-1\right)\cdot\left(2x+1\right)=7\cdot3\cdot3\\ \left(2x-1\right)\cdot\left(2x+1\right)=7\cdot9\\ \Rightarrow2x+1=9\\ 2x=8\\ x=4\)

 

 

25 tháng 8 2020

a) \(2x+\frac{3}{15}=\frac{7}{5}\) 

=> \(2x=\frac{7}{5}-\frac{3}{15}=\frac{21}{15}-\frac{3}{15}=\frac{18}{15}\)

=> \(x=\frac{18}{15}:2=\frac{18}{15}\cdot\frac{1}{2}=\frac{9}{15}\cdot\frac{1}{1}=\frac{9}{15}\)

b) \(x-\frac{2}{9}=\frac{8}{3}\)

=> \(x=\frac{8}{3}+\frac{2}{9}\)

=> \(x=\frac{24}{9}+\frac{2}{9}=\frac{26}{9}\)

c) \(\frac{-8}{x}=\frac{-x}{18}\)

=> x(-x) = (-8).18

=> -x2 = -144

=> x2 = 144(bỏ dấu âm)

=> x = \(\pm\)12

d) \(\frac{2x+3}{6}=\frac{x-2}{5}\)

=> 5(2x + 3) = 6(x - 2)

=> 10x + 15 = 6x - 12

=> 10x + 15 - 6x + 12 = 0

=> 4x + 27 = 0

=> 4x = -27

=> x = -27/4

e) \(\frac{x+1}{22}=\frac{6}{x}\)

=> x(x + 1) = 132

=> x(x + 1) = 11.12

=> x = 11

f) \(\frac{2x-1}{2}=\frac{5}{x}\)

=> x(2x - 1) = 10

=> 2x2 - x = 10

=> 2x2 - x - 10 = 0

tới đây tự làm đi nhé

g) \(\frac{2x-1}{21}=\frac{3}{2x+1}\)

=> (2x - 1)(2x + 1) = 63

=> 4x2 - 1 = 63

=> 4x2 = 64

=> x2 = 16

=> x = \(\pm\)4

h) Tương tự

25 tháng 8 2020

a) \(\frac{2x+3}{15}=\frac{7}{5}\Leftrightarrow10x+15=105\Leftrightarrow10x=90\Rightarrow x=9\)

b) \(\frac{x-2}{9}=\frac{8}{3}\Leftrightarrow3x-6=72\Leftrightarrow3x=78\Rightarrow x=26\)

c) \(\frac{-8}{x}=\frac{-x}{18}\Leftrightarrow x^2=144\Leftrightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)

d) \(\frac{2x+3}{6}=\frac{x-2}{5}\Leftrightarrow10x+15=12x-12\Leftrightarrow2x=27\Rightarrow x=\frac{27}{2}\)

e) \(\frac{x+1}{22}=\frac{6}{x}\Leftrightarrow x^2+x-132=0\Leftrightarrow\left(x-11\right)\left(x+12\right)=0\Leftrightarrow\orbr{\begin{cases}x=11\\x=-12\end{cases}}\)

f) \(\frac{2x-1}{2}=\frac{5}{x}\Leftrightarrow2x^2-x-10=0\Leftrightarrow\left(x-2\right)\left(2x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{5}{2}\end{cases}}\)

g) \(\frac{2x-1}{21}=\frac{3}{2x+1}\Leftrightarrow4x^2=64\Leftrightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

h) \(\frac{10x+5}{6}=\frac{5}{x+1}\Leftrightarrow10x^2+15x-25=0\Leftrightarrow5\left(x-1\right)\left(2x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)

11 tháng 9 2016

a. x=1

b. x=1

2 tháng 9 2017

a. x = 1

b. x = 1

a: \(\Leftrightarrow\left|x-1\right|=3-2x\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3-x+1\right)\left(2x+3+x-1\right)=0\\x< =\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(3x+2\right)=0\\x< =\dfrac{3}{2}\end{matrix}\right.\)

=>x=-2/3

b: Trường hợp 1: x<-3

Pt sẽ là:

\(-x-1-x-3=10-4x\)

=>-2x-4=10-4x

=>2x=14

hay x=7(loại)

Trường hợp 2: -3<=x<-1

Pt sẽ là \(x+3-x-1=10-4x\)

=>10-4x=2

=>4x=8

hay x=2(loại)

Trường hợp 3: x>=-1

Pt sẽ là x+1+x+3=10-4x

=>2x+4=10-4x

=>6x=6

hay x=1(nhận)