Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Để \(x^2+5x<0\)
Vì \(x^2\ge0\) nên \(5x>-x^2\)
\(\Leftrightarrow5>-x^2+x\)
\(2|x-5|=8\)
\(\Rightarrow|x-5|=8\div2\)
\(\Rightarrow|x-5|=4\)
\(\Rightarrow\orbr{\begin{cases}x-5=4\\x-5=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=4+5\\x=-4+5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=9\\x=1\end{cases}}\)
Vậy x = 9 hoặc x = 1
ta có 2|x-5|=8
\(\left|x-5\right|=4\Rightarrow\orbr{\begin{cases}x-5=-4\\x-5=4\end{cases}}\)
\(\orbr{\begin{cases}x=-4+5=1\\x=4+5=9\end{cases}}\)vậy x =1 hoặc x=9
\(2^3+3\cdot\left(\dfrac{1}{9}\right)^0-2^{-2}\cdot4+\left[\left(-2\right)^2:\dfrac{1}{2}\right]\cdot8\)
\(=8+3\cdot1-\dfrac{1}{4}\cdot4+\left(4:\dfrac{1}{2}\right)\cdot8\)
\(=8+3-\dfrac{4}{4}+4\cdot2\cdot8\)
\(=11-1+8\cdot8\)
\(=10+64\)
\(=74\)
\(=8+3-2^{-2}\cdot2^2+\left[4\cdot2\right]\cdot8\)
=11-1+8*8
=64+10=74
Lời giải:
$A=9+2.3^2+2.3^3+2.3^4+...+2.3^{2023}$
$A-9=2(3^2+3^3+3^4+...+3^{2023})$
$3(A-9)=2(3^3+3^4+3^5+...+3^{2024})$
$\Rightarrow 3(A-9)-(A-9)=2(3^{2024}-3^2)$
$2(A-9)=2.3^{2024}-18$
$\Rightarrow 2A-18=2.3^{2024}-18$
$\Rightarrow A=3^{2024}\vdots 3^{2023}$ (đpcm)
mình học lớp 5 mình cũng giải luôn
12 x 12 x 12 x 12 x 12 = 125
1 x 1 x 1 x 1 x 1 x 1 = 16
3 x 3 x 3 x 3 x 3 x 3 = 36
ban lam sai rui de mk lam lai nhe.
\(12.\left(x-1\right):3=4^3-2^3\)
\(12.\left(x-1\right):3=64-8\)
\(12.\left(x-1\right):3=56\)
\(12.\left(x-1\right)=56.3\)
\(12.\left(x-1\right)=168\)
\(x-1=168:12\)
\(x-1=14\)
\(x=15\)