\((x-y)(x^{2}+y^{2})-(x^{4}y-xy^{4}):xy\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2023

(x - y)(x² + y²) - (x⁴y - xy⁴) : xy

= x³ + xy² - x²y - y³ - x³ + y³

= (x³ - x³) + (-y³ + y³) + xy² - x²y

= xy² - x²y

8 tháng 11 2018

Bài 2

\(a,x^3+2x^2+x\)

\(=x.\left(x^2+2x+1\right)\)

\(b,xy+y^2-x-y\)

\(=y.\left(x+y\right)-\left(x+y\right)\)

\(=\left(y-1\right).\left(x+y\right)\)

bài 3

\(a,3x.\left(x^2-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x=0\\x^2=4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=2,x=-2\end{cases}}\)

vậy x=0,x=2 hay x=-2

\(b,xy+y^2-x-y=0\)

\(y.\left(x+y\right)-\left(x+y\right)=0\)

\(\left(y-1\right).\left(x+y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y-1=0\\x+y=0\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x=-1\end{cases}}}\)

vậy x=-1, y=1

30 tháng 8 2020

Gỉa thiết tương đương với \(xy^2+\frac{x^2}{z}+\frac{y}{z^2}=3\)

Đặt \(a=x;b=y;c=\frac{1}{z}\)khi đó bài toán quy về 

\(ab^2+a^2c+c^2b=3\)Tìm GTLN của \(P=\frac{1}{a^4+b^4+c^4}\)

Sử dụng BĐT AM-GM ta có :

\(a^4+b^4+b^4+1\ge4\sqrt[4]{a^4b^4b^4}=4ab^2\)

Bằng cách chứng minh tương tự ta được :

\(b^4+c^4+c^4+1\ge4bc^2\)\(c^4+a^4+a^4+1\ge4ca^2\)

Cộng theo vế các bđt cùng chiều ta được :

\(3\left(a^4+b^4+c^4\right)+3\ge4\left(ab^2+bc^2+ca^2\right)=4.3=12\)

\(< =>a^4+b^4+c^4+1\ge\frac{12}{3}=4\)

\(< =>a^4+b^4+c^4\ge4-1=3\)

Vậy \(P\le\frac{1}{3}\)Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1< =>x=y=z=1\)

24 tháng 7 2019

1) \(VT=x^3+x^2y-x^2y-xy^2+xy^2+y^3=x^3+y^3=VP\)

2) \(VP=x^2+xy-xy-y^2=x^2-y^2=VT\)

3) \(VP=x^2+2\cdot x\cdot1+1=x^2+2x+1=VT\)

4) \(VP=x^3+x^2y+xy^2-x^2y-xy^2-y^3=x^3-y^3=VT\)

24 tháng 7 2019

1, \(\left(x^2-xy+y^2\right)\left(x+y\right)=x^3+y^3\\ x^3+x^2y-x^2y-xy^2+xy^2+y^3=x^3+y^3\\ x^3+y^3=x^3+y^3\left(đúng\right)\)Vậy ta được đpcm

2, \(x^2-y^2=\left(x-y\right)\left(x+y\right)\\ x^2-y^2=x^2+xy-xy-y^2\\ x^2-y^2=x^2-y^2\left(đúng\right)\)Vậy ta được đpcm

3, \(x^2+2x+1=\left(x+1\right)^2\\ x^2+2x+1=\left(x+1\right)\left(x+1\right)\\ x^2+2x+1=x^2+x+x+1\\ x^2+2x+1=x^2+2x+1\left(đúng\right)\)Vậy ta được đpcm

4, \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\\ x^3-y^3=x^3+x^2y+xy^2-x^2y-xy^2-y^3\\ x^3-y^3=x^3-y^3\left(đúng\right)\)Vậy ta được đpcm

6 tháng 6 2017

Ta có:

\(\left(a+b+c\right)^2=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)

\(=a^2+2ab+b^2+2ac+2bc+c^2\)

\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)\) \(\Rightarrowđpcm\)

6 tháng 6 2017

Đề câu b max hư cấuoho

6 tháng 11 2018

Bài 2:

a)x3+2x2+x

=x(x2+2x+12)

=x(x+1)2

b)xy+y2-x-y

=(xy-x)+(y2-y)

=x(y-1)+y(y-1)

=(y-1)(x+y)

7 tháng 11 2018

Bai 1:
a) = 2x^3 + 14x^2 - 2x^3 - x^2 + 9x - 12
= 13x^2 + 9x - 12
b) = x^2 - 2x + 1 - x^2 + 4x - 4x + 16
= -2x + 17