Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đại lượng y là hàm số của đại lượng x bởi vì với mỗi giá trị của x, chỉ nhận được duy nhất 1 giá trị của đại lượng y
\(\frac{1}{27}\)x3+\(\frac{1}{125}\)y3
=(\(\frac{1}{3}\)x)3+(\(\frac{1}{5}\)y)3
=(\(\frac{1}{3}\)x+\(\frac{1}{5}\)y)[(\(\frac{1}{3}\)x)2-\(\frac{1}{3}\)x.\(\frac{1}{5}\)y+(\(\frac{1}{5}\)y)2]
=(\(\frac{1}{3}\)x+\(\frac{1}{5}\)y)(\(\frac{1}{9}\)x2-\(\frac{1}{15}\)xy+\(\frac{1}{25}\)y2)
Đại lượng y là hàm số của đại lượng x. Bởi vì với mỗi giá trị của x chỉ tìm được duy nhất một giá trị tương ứng của y
Bài 1 :
Cách 1 : Dùng hằng đẳng thức : \(A^3-B^3=\left(A-B\right)\left(A^2+AB+B^2\right)\)
Áp dụng hằng đẳng thức trên ta suy ra được : đpcm.
Cách 2 :
\(VT=\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3+x^2+x-x^2-x-1\)
\(=x^3-1\left(VP\right)\)
suy ra : đpcm.
Bài 2 :
Hình như sai đề rồi á bạn . Đáp án đúng phải là \(x^4-y^4\) á cậu.
Cách 1 : Ta biến đổi vế phải thành vế trái .
Ta có : \(VP=x^4-y^4=\left(x^2+y^2\right)\left(x^2-y^2\right)\)
\(=\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)\)
\(=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\left(VT\right)\)
Suy ra : đpcm.
Cách 2 : Bạn cũng có thể dùng hằng đẳng thức hoặc nhân bung vế trái ra á.
`1,`
Cách 1: Chứng minh theo hằng đẳng thức
`(x-1)(x^2+x+1)=x^3-1^3=x^3-1`
Cách 2: Chứng minh theo tích chất phân phối
`(x-1)(x^2+x+1)=x(x^2+x+1)-(x^2+x+1)=x^3+x^2+x-x^2-x-1=x^3-1`
........
`2,` Xem lại đề
Học rồi mà quên mất 😿
Học lớp 6 về mũ rồi lên lớp 8 học hằng đẳng thức, k bíc dùng cái nào để áp dụng cái này 😿