K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
6 tháng 11 2020

\(\hept{\begin{cases}x+y=\sqrt{2}\\x^2+y^2=1\end{cases}}\)

Ta có: \(x^2+y^2\ge2\sqrt{x^2y^2}=2|xy|\ge2xy\)(theo bất đẳng thức Cô-si) 

Cộng cả 2 vế của bất đẳng thức với \(x^2+y^2\)ta được: 

\(2\left(x^2+y^2\right)\ge x^2+y^2+2xy=x^2+xy+y^2+xy=\left(x+y\right)^2\)

\(\Rightarrow2=2\left(x^2+y^2\right)\ge\left(x+y\right)^2=\left(\sqrt{2}\right)^2=2\)

Dấu \(=\)xảy ra tại \(x=y=\frac{\sqrt{2}}{2}\).

Vậy hệ phương trình có nghiệm \(\left(x,y\right)=\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)\).

AH
Akai Haruma
Giáo viên
29 tháng 10 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn dễ hơn nhé.

17 tháng 2 2020

a) Ta có : \(x=\sqrt{40+2}=\sqrt{42}< \sqrt{49}=7\)                    (1)

\(y=\sqrt{40}+\sqrt{2}>\sqrt{36}+\sqrt{1}=6+1=7\)             (2)

Từ (1) và (2) => x = y

b) Ta có : \(x=\sqrt{625}-\frac{1}{\sqrt{5}}=25-\frac{1}{\sqrt{5}}\)        (1)

\(y=\sqrt{576}-\frac{1}{\sqrt{6}}+1=24-\frac{1}{\sqrt{6}}+1=25-\frac{1}{\sqrt{6}}\) (2)

Vì \(\sqrt{5}< \sqrt{6}\)nên \(\frac{1}{\sqrt{5}}>\frac{1}{\sqrt{6}}\)(3)

(1),(2),(3) => \(x>y\)

17 tháng 2 2020

Mà Mun Già ơi, chỗ mà câu a đó, KL hình như sai rồi, từ (1) và (2) suy ra x<y chứ sao = nhau đc

4 tháng 5 2021

Cho hai đơn thức:(-6.x^2.y.z) và (2/3.x^2.y)
a, Tính tích của hai đơn thức

(-6.x^2.y.z) . (2/3.x^2.y)

= (-6.x^2.y.z) . (2/3.x^2.y)

= (-6.2/3).(x^2.x^2).(y.y).z

= -4. x^4. y^2 .z
b, Tìm phần biến , bậc của tích trên

Phần biến là -4

bậc của tích trên là : 4+2+1= 7
c, tính giá trị của (-6.x^2.y.z) tại x=-1; y=1/3 và z=-2

thay x=-1; y=1/3 và z=-2 vào (-6.x^2.y.z) ta có:

-6.\(\left(-1\right)^2.\dfrac{1}{3}.-2\)

=4

học tốt :D

1 tháng 9 2016

bạn bấm mấy tính là đc chứ j

**** nha bn

**** nha

1 tháng 9 2016

A = căn bậc hai của 225 - 1/căn bậc hai của 5 - 1 

Tức là : 

\(\sqrt{244}\)và \(\sqrt{4}\)

tất nhiên ........

B = căn bậc hai của 196 - 1/căn bậc hai của 6 

Tất nhiên ......

2) Tìm GTNN của A = 2 + căn bậc hai của x 

\(A=2+\sqrt{x}\)

\(\sqrt{x+2}\)

3) Tìm GTNN của B = 5 - 2 . căn bậc hai của x - 1 

\(B=5-2.\sqrt{x-1}\)

\(4-2\sqrt{x}\)

28 tháng 12 2015

d​ễ ợt tích đi chqus la.f cho