Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có :
\(\left\{{}\begin{matrix}\left(x-1\right)^4\ge0\\\left(y-3\right)^4\ge0\end{matrix}\right.\)
Mà \(\left(x-1\right)^4+\left(y-3\right)^4=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^4=0\\\left(y-3\right)^4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
Vậy ................
b/ Ta thấy :
\(\left\{{}\begin{matrix}\left(x+y\right)^{2006}\ge0\\2000\left|y-1\right|\ge0\end{matrix}\right.\)
Mà \(\left(x+y\right)^{2006}+2000\left|y-1\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^{2006}=0\\2000\left|y-1\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\\left|y-1\right|=0\end{matrix}\right.\)
+) \(\left|y-1\right|=0\)
\(\Leftrightarrow y-1=0\)
\(\Leftrightarrow y=1\)
Mà \(x+y=0\)
\(\Leftrightarrow x=-1\)
Vậy ........
c/ Tương tự như b
NX:\(\left(x-1\right)^4\ge0\forall x\)
\(\left(y-3\right)^4\ge0\forall y\)
\(\Rightarrow\left(x-1\right)^4+\left(y-3\right)^4\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^4+\left(y-3\right)^4=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
b)làm tương tự phần a:
NX :|y-1| \(\ge\)0 với mọi y
=> 2000|y-1|\(\ge\)0 với mọi y
(x+y)^2006\(\ge\)0 với mọi x
=> 2000|y-1|+ (x+y)^2006\(\ge\)0 với mọi x,y
=> 2000|y-1|+ (x+y)^2006=0
<=> \(\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-y\\y=1\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
c) nhận xét |x-y-5| lớn hơn hoặc bằng 0 rồi làm tương tự
a: \(\left(x-1\right)^4+\left(y-3\right)^4=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
b: \(\left(x+y\right)^{2006}+2000\left|y-1\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
c: \(\left|x-y-5\right|+\left(y+3\right)^{2000}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=5\\y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+5=-3+5=2\\y=-3\end{matrix}\right.\)
Dễ thấy từng hạng tử đều mang lũy thừa chẵn nên:
\(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=1;y=-1\\z=\frac{5}{3}\end{cases}}}\)\(\Rightarrow\left(x;y;z\right)=\left(\frac{5}{3};1;\frac{5}{3}\right),\left(\frac{5}{3};-1;\frac{5}{3}\right)\)
\(\left(2x-5\right)^{2006}+\left(3y+4\right)^{2008}=0\)
Vì \(\left\{{}\begin{matrix}\left(2x-5\right)^{2006}\ge0\forall x\\\left(3y+4\right)^{2008}\ge0\forall y\end{matrix}\right.\)\(\Rightarrow\left(2x-5\right)^{2006}+\left(3y+4\right)^{2008}\ge0\forall x,y\)
Dấu = xảy ra khi: \(\left\{{}\begin{matrix}\left(2x-5\right)^{2006}=0\\\left(3y+4\right)^{2008}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=-\frac{4}{3}\end{matrix}\right.\)
Vậy \(x=\frac{5}{2},y=-\frac{4}{3}\)
\(\left(2x-5\right)^{2006}+\left(3y+4\right)^{2008}=0\)
Ta có:
\(\left\{{}\begin{matrix}\left(2x-5\right)^{2006}\ge0\\\left(3y+4\right)^{2008}\ge0\end{matrix}\right.\forall x,y\)
\(\Rightarrow\left(2x-5\right)^{2006}+\left(3y+4\right)^{2008}\ge0\forall x,y.\)
\(\Rightarrow\left(2x-5\right)^{2006}+\left(3y+4\right)^{2008}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(2x-5\right)^{2006}=0\\\left(3y+4\right)^{2008}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=5:2\\y=\left(-4\right):3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=-\frac{4}{3}\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\frac{5}{2};-\frac{4}{3}\right\}.\)
Chúc bạn học tốt!
(x + y) 2006 + 2007 (y - 1) = 0
=> (x + y) 2006 = 0 và 2007 (y - 1) = 0
=> x + y = 0 và y - 1 = 0
=> x + y = 0 và y = 0 + 1 = 1
=> x + 1 = 0 và y = 1
=> x = 0 - 1 = -1 và y = 1
(x - y - 5) + 2007 (y - 3) 2008 = 0
=> (x - y - 5) = 0 và 2007 (y - 3) 2008 = 0
=> x - y = 0 + 5 = 5 và (y - 3)2008 = 0
=> x - y = 5 và y - 3 = 0 => y = 0 + 3 = 3
=> x - 3 = 5 và y = 3
=> x = 5 + 3 = 8 và y = 3
(x - 1) 2 + (y + 3) 2 = 0
=> (x - 1) 2 = 0 và (y + 3) 2 = 0
=> x - 1 = 0 và y + 3 = 0
=> x = 0 + 1 = 1 và y = 0 - 3 = -3
tìm x y thõa mãn đẳng thức
(x+y) ^ 2006 +2007[y-1] = 0
[x-y-5] + 2007(y-3)^ 2008 = 0
(x-1) ^ 2 + (y+3) ^ 2 = 0
Đề như thế này phải ko nhân Shift rồi ấn số 6 là mũ
Vì mũ chẵn và GTTĐ luôn lớn hơn hoặc bằng 0
mà ... ( ghi đề bài ra )
\(\Rightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\\\frac{4}{3}x+\frac{5}{2}y=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-4}{3}\end{cases}}\)
Vậy,.......
Ta có : \(\hept{\begin{cases}\left|x-y-5\right|\ge0\forall x;y\\2007\left(y-3\right)^{2006}\ge0\forall y\end{cases}\Rightarrow\left|x-y-5\right|+2007\left(y-3\right)^{2006}\ge0\forall x;y}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y-5=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=8\\y=3\end{cases}}\)
Vậy x = 8 ; y = 3 là giá trị cần tìm