Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, x mũ 2 + 4x + 3 = ( x+ 1 ) ( x + 3 )
1, \(x^2+2x-3=x^2+3x-x-3=x\left(x-1\right)+3\left(x-1\right)=\left(x+3\right)\left(x-1\right)\)
2, \(x^2+3x-10=x^2+5x-2x-10=x\left(x-2\right)+5\left(x-2\right)=\left(x+5\right)\left(x-2\right)\)
3, \(x^2-x-12=x^2-4x+3x-12=x\left(x+3\right)-4\left(x+3\right)=\left(x-4\right)\left(x+3\right)\)
4, \(3x^2+4x-7=3x^2+7x-3x-7=3x\left(x-1\right)+7\left(x-1\right)=\left(3x+7\right)\left(x-1\right)\)
5, \(4x^2-9y^2-5xy=4x^2-9xy+4xy-9y^2\)
\(=4x\left(x+y\right)-9y\left(x+y\right)=\left(4x-9y\right)\left(x+y\right)\)
6, \(x^2-2x-4y^2-4y=x^2-2x+1-4y^2-4y-1=\left(x-1\right)^2-\left(2y+1\right)^2\)
\(=\left(x-1-2y-1\right)\left(x-1+2y+1\right)=\left(x-2y-2\right)\left(x+2y\right)\)
Câu a : \(4x^3-5x^2+6x+9\)
\(=4x^3+3x^2-8x^2-6x+12x+9\)
\(=\left(4x^3+3x^2\right)-\left(8x^2+6x\right)+\left(12x+9\right)\)
\(=x^2\left(4x+3\right)-2x\left(4x+3\right)+3\left(4x+3\right)\)
\(=\left(4x+3\right)\left(x^2-2x+3\right)\)
Câu b : \(5x^3-12x^2+14x-4\)
\(=5x^3-10x^2-2x^2+10x+4x-4\)
\(=\left(5x^3-2x^2\right)-\left(10x^2-4x\right)+\left(10x-4\right)\)
\(=x^2\left(5x-2\right)-2x\left(5x-2\right)+2\left(5x-2\right)\)
\(=\left(5x-2\right)\left(x^2-2x+2\right)\)
Câu c : \(x^3-5x^2+2x+8\)
\(=x^3+x^2-6x^2-6x+8x+8\)
\(=\left(x^3+x^2\right)-\left(6x^2+6x\right)+\left(8x+8\right)\)
\(=x^2\left(x+1\right)-6x\left(x+1\right)+8\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-6x+8\right)\)
\(=\left(x+1\right)\left[x^2-2x-4x+8\right]\)
\(=\left(x+1\right)\left[x\left(x-2\right)-4\left(x-2\right)\right]\)
\(=\left(x+1\right)\left(x-2\right)\left(x-4\right)\)
Câu d : \(4x^3+5x^2+10x-12\)
\(=4x^3+8x^2-3x^2+16x-6x-12\)
\(=\left(4x^3-3x^2\right)+\left(8x^2-6x\right)+\left(16x-12\right)\)
\(=x^2\left(4x-3\right)+2x\left(4x-3\right)+4\left(4x-3\right)\)
\(=\left(4x-3\right)\left(x^2+2x+4\right)\)
f) = x2( x - 4 ) - 9( x - 4 ) = ( x - 4 )( x - 3 )( x + 3 )
g) = 4( x - y ) + ( x - y )2 = ( x - y )( x - y + 4 )
h) = x3( x + 1 ) + ( x - 1 )( x + 1 ) = ( x + 1 )( x3 + x - 1 )
i) = ( x - y )( x + y ) - 4( x + y ) = ( x + y )( x - y - 4 )
j) = ( x - y )( x2 + xy + y2 ) - 3( x - y ) = ( x - y )( x2 + xy + y2 - 3 )
Trả lời:
f, x3 - 4x2 - 9x + 36 = ( x3 - 4x2 ) - ( 9x - 36 ) = x2 ( x - 4 ) - 9 ( x - 4 ) = ( x - 4 )( x2 - 9 ) = ( x - 4 )( x - 3 )( x + 3 )
g, 4x - 4y + x2 - 2xy + y2 = ( 4x - 4y ) + ( x2 - 2xy + y2 ) = 4 ( x - y ) + ( x - y )2 = ( x - y ) ( 4 + x - y )
h, x4 + x3 + x2 - 1 = ( x4 + x3 ) + ( x2 - 1 ) = x3 ( x + 1 ) + ( x - 1 )( x + 1 ) = ( x + 1 )( x3 + x - 1 )
i, x2 - y2 - 4x - 4y = ( x2 - y2 ) - ( 4x + 4y ) = ( x - y )( x + y ) - 4 ( x + y ) = ( x + y )( x - y - 4 )
j, x3 - y3 - 3x + 3y = ( x3 - y3 ) - ( 3x - 3y ) = ( x - y )( x2 + xy + y2 ) - 3 ( x - y ) = ( x - y )( x2 + xy + y2 - 3 )
1, \(x^3+4x^2+4x=0\Leftrightarrow x\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow x\left(x+2\right)^2=0\Leftrightarrow x=-2;x=0\)
2, \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=1\)
3, \(x^4-9x^2=0\Leftrightarrow x^2\left(x^2-9\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=0;\pm3\)
4, \(x^2-6x+9=81\Leftrightarrow\left(x-3\right)^2=9^2\)
\(\Leftrightarrow\left(x-3-9\right)\left(x-3+9\right)=0\Leftrightarrow\left(x-12\right)\left(x+6\right)=0\Leftrightarrow x=-6;x=12\)
5, em xem lại đề nhé
à lag tý @@
5, \(x^3+6x^2+9x-4x=0\Leftrightarrow x^3+6x^2+5x=0\)
\(\Leftrightarrow x\left(x^2+6x+5\right)=0\Leftrightarrow x\left(x^2+x+5x+5\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=-1;x=0\)
x4 + 2x3 + 5x2 + 4x - 12
= x4 + x3 + x3 + 6x2 + x2 - 2x2 + 6x - 2x - 12
= ( x4 + x3 + 6x2 ) + ( x3 + x2 + 6x ) - ( 2x2 + 2x + 12 )
= x2( x2 + x + 6 ) + x( x2 + x + 6 ) - 2( x2 + x + 6 )
= ( x2 + x + 6 )( x2 + x - 2 )
= ( x2 + x + 6 )( x2 - x + 2x - 2 )
= ( x2 + x + 6 )[ x( x - 1 ) + 2( x - 1 ) ]
= ( x2 + x + 6 )( x - 1 )( x + 2 )
Bài 2:
a: \(\Leftrightarrow\left(x-5\right)\left(x+5\right)-\left(x+5\right)=0\)
=>(x+5)(x-6)=0
=>x=-5 hoặc x=6
b: \(\Leftrightarrow4x^2-4x+1-4x^2+1=0\)
=>-4x+2=0
hay x=1/2
c: \(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)
=>x=1 hoặc x=-1
Phân tích đa thức thành nhân tử ?
Ta có: \(P=\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
Đặt \(x^2+4x+8=y\)
Khi đó:
\(P=y^2+3xy+2x^2\)
\(P=\left(y^2+xy\right)+\left(2xy+2x^2\right)\)
\(P=y\left(x+y\right)+2x\left(x+y\right)\)
\(P=\left(x+y\right)\left(2x+y\right)\)
\(P=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
\(P=\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)\)
1. \(x^6-2x^3+1=0\Leftrightarrow\left(x^3-1\right)^2=0\Leftrightarrow x=1\)
2. \(x^6+\dfrac{1}{4}x^3+\dfrac{1}{64}=0\Leftrightarrow\left(x^3\right)^2+2.x^3.\dfrac{1}{8}+\left(\dfrac{1}{8}\right)^2=0\Leftrightarrow\left(x+\dfrac{1}{8}\right)^2=0\Leftrightarrow x=-\dfrac{1}{2}\)4. \(x^3-10x^2+25x=0\Leftrightarrow x^3-5x^2-5x^2+25x=0\)
\(\Leftrightarrow x^2\left(x-5\right)-5x\left(x-5\right)=0\)
\(\Leftrightarrow x\left(x-5\right)^2=0\Leftrightarrow x=5\)
5. \(\dfrac{1}{4}x^3-3x^2+9x=0\)
\(\Leftrightarrow x\left(\dfrac{1}{4}x^2-3x+9\right)=0\)
\(\Leftrightarrow x\left[\left(\dfrac{1}{2}x\right)^2-2.\dfrac{1}{2}x.3+3^2\right]=0\)
\(\Leftrightarrow x\left(\dfrac{1}{2}x-3\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
6. \(x^5-16x=0\Leftrightarrow x\left(x^4-16\right)=0\Leftrightarrow x\left(x^2-4\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\\x^2=-4\left(l\right)\end{matrix}\right.\)
7. \(4x^2+4x-3=0\Leftrightarrow4x^2-2x^2-6x-3=0\)
\(\Leftrightarrow2x\left(2x-1\right)-3\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
8. \(4x^2+28x+48=0\Leftrightarrow4x^2+12x+14x+48=0\)
\(\Leftrightarrow4x\left(x+3\right)+12\left(x+4\right)=0\)
\(\Leftrightarrow\left(4x+12\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-4\end{matrix}\right.\)
9. \(9x^2-12x+3=0\Leftrightarrow9x^2-9x-3x+3=0\Leftrightarrow9x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(9x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(\left(x^2+x\right)^2+4x^2+4x-12=x^4+2x^3+x^2+4x^2+4x-12\)
\(=x^4+2x^3+5x^2+4x-12=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)