Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\\ \Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
- ĐK \(x\ne0\Rightarrow\)\(\left(3x-1\right)\left(5-\frac{1}{2x}\right)=0\Leftrightarrow\orbr{\begin{cases}3x-1=0\\5-\frac{1}{2x}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=1\\10x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=\frac{1}{10}\end{cases}}}\)
- ĐK \(2x-1\ne0\Leftrightarrow x\ne\frac{1}{2}\)\(\frac{1}{4}+\frac{1}{3}:\left(2x-2\right)=5\Leftrightarrow\frac{1}{4}+\frac{1}{3\left(2x-1\right)}=5\)\(\Leftrightarrow3\left(2x-1\right)+4=4.3.5.\left(2x-1\right)\Leftrightarrow6x-3+4=120x-60\)\(\Leftrightarrow114x=61\Leftrightarrow x=\frac{61}{114}\)
- \(\left(2x+\frac{3}{5}\right)^2-\left(\frac{3}{5}\right)^2=0\Leftrightarrow\left(2x+\frac{3}{5}-\frac{3}{5}\right)\left(2x+\frac{3}{5}+\frac{3}{5}\right)=0\)\(2x\left(2x+\frac{6}{5}\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\2x=-\frac{6}{5}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)
- \(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\Leftrightarrow3x-\frac{1}{2}=\sqrt[3]{-\frac{1}{27}}\)\(\Leftrightarrow3x-\frac{1}{2}=-\frac{1}{3}\Leftrightarrow3x=\frac{1}{6}\Leftrightarrow x=\frac{1}{18}\)
a: ĐKXĐ: \(x\in R\)
\(\sqrt{x^2+6x+9}=2x+1\)
=>\(\left|x+3\right|=2x+1\)
=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{2}\\\left(2x+1\right)^2=\left(x+3\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{1}{2}\\\left(2x+1-x-3\right)\left(2x+1+x+3\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{2}\\\left(x-2\right)\left(3x+4\right)=0\end{matrix}\right.\Leftrightarrow x=2\)
\(\sqrt{x^2+6x+9}=2x-1\\ \Leftrightarrow\sqrt{\left(x+3\right)^2}=2x-1\\ \Leftrightarrow\left|x+3\right|=2x-1\\ TH_1:x\ge-3\\ x+3=2x-1\Leftrightarrow-x=-4\Leftrightarrow x=4\left(tm\right)\\ TH_2:x< -3\\ -x-3=2x-1\Leftrightarrow-3x=2\Leftrightarrow x=-\dfrac{2}{3}\left(tm\right)\)
Vậy \(S=\left\{-\dfrac{2}{3};4\right\}\)
Vẽ đồ thị hàm số:
1, y = 1/4x mũ 2
2, y = -1/4 x mũ 2
3, y = -2 x mũ 2
4, y = -1/2 x mũ 2
5, y = 3 x mũ 2
Ta có: \(2x^2+x=2\)
\(\Leftrightarrow2x^2+x-2=0\)
\(Δ=1^2-4\cdot2\cdot\left(-2\right)=1+16=17\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{17}}{4}\\x_2=\dfrac{-1+\sqrt{17}}{4}\end{matrix}\right.\)
b: Để hai đường thẳng song song thì
\(\left\{{}\begin{matrix}m^2-2=2\\1-m< >3\end{matrix}\right.\Leftrightarrow m=2\)
\(x^2-2x+3=\left(x^2-2x+1\right)+2-\left(x-1\right)\)
\(x^2-2x+3-x^2+2x-1-2+x-1=0\)
\(x-1=0\)
\(x=1\)
`x^{2}-2x+3=(x^2-2x+1)+2-(x-1)`
`<=>x^2-2x+3=x^2-2x+1+2-x+1`
`<=>x=0`
Vậy S={`0`}