Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình x + x − 1 = 0 có chứa căn thức bên không là phương trình bậc hai một ẩn.
Phương trình 2x + 2y2 + 3 = 9 có chứa hai biến x; y nên không là phương trình bậc hai một ẩn.
Phương trình 1 x 2 + x + 1 = 0 có chứa ẩn ở mẫu thức nên không là phương trình bậc hai một ẩn.
Phương trình 2 x2 + 1 = 0 và x2 + 2019x = 0 là những phương trình bậc hai một ẩn.
Vậy có hai phương trình bậc hai một ẩn trong số các phương trình đã cho.
Đáp án cần chọn là: A
Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1
a: \(\Leftrightarrow2x-4\sqrt{x}+\sqrt{x}-2-7=0\)
\(\Leftrightarrow2x-3\sqrt{x}-9=0\)
\(\Leftrightarrow x=09\)
3:
a: u+v=14 và uv=40
=>u,v là nghiệm của pt là x^2-14x+40=0
=>x=4 hoặc x=10
=>(u,v)=(4;10) hoặc (u,v)=(10;4)
b: u+v=-7 và uv=12
=>u,v là các nghiệm của pt:
x^2+7x+12=0
=>x=-3 hoặc x=-4
=>(u,v)=(-3;-4) hoặc (u,v)=(-4;-3)
c; u+v=-5 và uv=-24
=>u,v là các nghiệm của phương trình:
x^2+5x-24=0
=>x=-8 hoặc x=3
=>(u,v)=(-8;3) hoặc (u,v)=(3;-8)
a: ĐKXĐ: \(x\in R\)
\(\sqrt{x^2+6x+9}=2x+1\)
=>\(\left|x+3\right|=2x+1\)
=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{2}\\\left(2x+1\right)^2=\left(x+3\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{1}{2}\\\left(2x+1-x-3\right)\left(2x+1+x+3\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{2}\\\left(x-2\right)\left(3x+4\right)=0\end{matrix}\right.\Leftrightarrow x=2\)
\(\sqrt{x^2+6x+9}=2x-1\\ \Leftrightarrow\sqrt{\left(x+3\right)^2}=2x-1\\ \Leftrightarrow\left|x+3\right|=2x-1\\ TH_1:x\ge-3\\ x+3=2x-1\Leftrightarrow-x=-4\Leftrightarrow x=4\left(tm\right)\\ TH_2:x< -3\\ -x-3=2x-1\Leftrightarrow-3x=2\Leftrightarrow x=-\dfrac{2}{3}\left(tm\right)\)
Vậy \(S=\left\{-\dfrac{2}{3};4\right\}\)