Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Nếu $m=1$ thì PT trở thành:
$4x+1=0$
$\Leftrightarrow x=\frac{-1}{4}$
Nếu $m\neq 1$ thì PT trên là PT bậc 2 ẩn $x$.
PT có nghiệm khi mà: $\Delta'=(m+1)^2-(m-1)(2m-1)\geq 0$
$\Leftrightarrow -m^2+5m\geq 0$
$\Leftrightarrow m^2-5m\leq 0$
$\Leftrightarrow m(m-5)\leq 0\Leftrightarrow 0\leq m\leq 5$
Kết hợp 2 TH suy ra PT có nghiệm khi $0\leq m\leq 5$
b. Để PT có thể có 2 nghiệm thì PT phải là PT bậc 2.
$\Rightarrow m\neq 1$
PT có nghiệm pb khi mà: $\Delta'=(m+1)^2-(m-1)(2m-1)> 0$
$\Leftrightarrow -m^2+5m>0$
$\Leftrightarrow m^2-5m<0$
$\Leftrightarrow m(m-5)<0$
$\Leftrightarrow 0< m< 5$
Vậy $0<m< 5$ và $m\neq 1$
c.
PT có 2 nghiệm trái dấu, tức là 2 nghiệm vừa phân biệt và trái dấu.
Từ kết quả phần b, PT có 2 nghiệm phân biệt khi $0< m< 5$ và $m\neq 1$ (1)
Theo định lý Viet, PT có 2 nghiệm trái dấu khi mà tích 2 nghiệm nhỏ hơn $0$
Hay: $\frac{2m-1}{m-1}<0$
$\Leftrightarrow \frac{1}{2}< m< 1$ (2)
Từ $(1); (2)\Rightarrow \frac{1}{2}< m< 1$
Bài này mình làm xong rồi nhưng lỡ tay bấm nút hủy.
MONG CÁC BẠN
Dễ thấy có 1 nghiệm là x=2
Để pt có 2 nghiệm pb thì x2+(m+1)x-m-2 có nghiệm kép khác 2
\(\Leftrightarrow\hept{\begin{cases}2^2+\left(m+1\right).2-m-2\ne0\\\Delta=\left(m+1\right)^2+4\left(m+2\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne-4\\m=-3\end{cases}}}\)
Vậy m=-3
a/
PT có nghiệm \(x=\sqrt{2}\Rightarrow\left(m-1\right).2-2m.\sqrt{2}+m-2=0\)
\(\Leftrightarrow\left(3-2\sqrt{2}\right)m=4\Leftrightarrow m=\frac{4}{3-2\sqrt{2}}\)
b/
\(\left(m-1\right)x^2-2mx+m-2=0\text{ (1)}\)
\(+m-1=0\Leftrightarrow m=1\text{ thì }\left(1\right)\text{ trở thành }-2x+1-2=0\Leftrightarrow x=-\frac{1}{2}\)(loại do chỉ có 1 nghiệm)
\(+m-1\ne0\Leftrightarrow m\ne1\)
\(\left(1\right)\text{ là một phương trình bậc 2 ẩn }x.\)
\(\left(1\right)\text{ có 2 nghiệm phân biệt }\Leftrightarrow\Delta'=m^2-\left(m-1\right)\left(m-2\right)>0\)
\(\Leftrightarrow3m-2>0\Leftrightarrow m>\frac{2}{3}\)
Để phương trình trên có 3 nghiệm phân biệt thì phương trình \(x^2-2mx-m=0\left(1\right)\) phải có hai nghiệm phân biệt khác 1.
Trong 3 nghiệm phải có 2 nghiệm dương mà x = 1 là một nghiệm dương rồi nên phương trình (1) phải có 1 nghiệm dương và một nghiệm âm, hay nói cách khác là hai nghiệm trái dấu.
Kết hợp các điều kiện ta có phương trình (1) phải có 2 nghiệm phân biệt khác 1 và trái dấu nhau. Điều kiện đó cho ta hệ sau:
\( \begin{cases} \Delta>0\\ P<0\\ 1-2m-m \neq 0\\ \end{cases} \Leftrightarrow \begin{cases} m^2+m>0\\-m<0\\ m \neq \dfrac{1}{3}\\ \end{cases} \Leftrightarrow \begin{cases} m<-1 \text{ hoăc } m>0\\m>0\\ m \neq \dfrac{1}{3}\\ \end{cases} \Leftrightarrow \begin{cases} m>0\\ m \neq \dfrac{1}{3}\\ \end{cases} \)
Chúc em học tập tốt :))
cô ơi ,cô viết cái j ở mấy dòng cuối thế ạ em xem chả hiểu cái j