
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(A\left(x\right)=x^7-2x^6+2x^3-2x^4-x^7+x^5+2x^6-x+5+2x^4-x^5\)
\(A\left(x\right)=(x^7-x^7)+(-2x^6+2x^6)+2x^3+(-2x^4+2x^4)+(x^5-x^5)-x+5\)
\(A\left(x\right)=2x^3-x+5\)
- Bậc của đa thức A(x) là 3
- Hệ số tự do: 5
- Hệ số cao nhất: 2
b) \(B\left(x\right)=-3x^5+4x^4-2x+\dfrac{1}{2}-2x^4+3x-x^5-2x^4+\dfrac{5}{2}+x\)
\(B\left(x\right)=(-3x^5-x^5)+(4x^4-2x^4-2x^4)+(-2x+x+3x)+\left(\dfrac{1}{2}+\dfrac{5}{2}\right)\)
\(B\left(x\right)=-4x^5+2x+3\)
- Bậc của đa thức B(x) là 5
- Hệ số tự do: 3
- Hệ số cao nhất: \(-4\)
c) \(C\left(y\right)=5y^2-2.\left(y+1\right)+3y.\left(y^2-2\right)+5\)
\(C\left(y\right)=5y^2-2y-2+3y\left(y^2-2\right)+5\)
\(C\left(y\right)=5y^2-2y-2+3y^3-6y+5\)
\(C\left(y\right)=5y^2-2y+3+3y^3-6y\)
\(C\left(y\right)=5y^2-8y+3+3y^3\)
\(C\left(y\right)=3y^3+5y^2-8y+3\)
- Bậc của đa thức C(y) là 3
- Hệ số tự do: 3
- Hệ số cao nhất: 3

a: Bậc là 4
Hệ só tự do -5
b: Bậc là 5
Hệ số tự do là 1
c: Bậc là 4
Hệ số tự do là 4

a: P(x)=2x^5-2x^5+4x^4-3x^4+5=x^4+5
Q(x)=-5x^4+2x^4-x^3+3x^2-10x+2
=-3x^4-x^3+3x^2-10x+2
b: P(x)+Q(x)
=x^4+5-3x^4-x^3+3x^2-10x+2
=-2x^4-x^3+3x^2-10x+7
Q(x)-P(x)
=-3x^4-x^3+3x^2-10x+2-x^4-5
=-4x^4-x^3+3x^2-10x-3
P(x)-Q(x)=-(Q(x)-P(x))
=4x^4+x^3-3x^2+10x+3

Bài 1:
- \(\dfrac{11}{2}x\) + 1 = \(\dfrac{1}{3}x-\dfrac{1}{4}\)
- \(\dfrac{11}{2}\)\(x\) - \(\dfrac{1}{3}\)\(x\) = - \(\dfrac{1}{4}\) - 1
-(\(\dfrac{33}{6}\) + \(\dfrac{2}{6}\))\(x\) = - \(\dfrac{5}{4}\)
- \(\dfrac{35}{6}\)\(x\) = - \(\dfrac{5}{4}\)
\(x=-\dfrac{5}{4}\) : (- \(\dfrac{35}{6}\))
\(x\) = \(\dfrac{3}{14}\)
Vậy \(x=\dfrac{3}{14}\)
Bài 2: 2\(x\) - \(\dfrac{2}{3}\) - 7\(x\) = \(\dfrac{3}{2}\) - 1
2\(x\) - 7\(x\) = \(\dfrac{3}{2}\) - 1 + \(\dfrac{2}{3}\)
- 5\(x\) = \(\dfrac{9}{6}\) - \(\dfrac{6}{6}\) + \(\dfrac{4}{6}\)
- 5\(x\) = \(\dfrac{7}{6}\)
\(x\) = \(\dfrac{7}{6}\) : (- 5)
\(x\) = - \(\dfrac{7}{30}\)
Vậy \(x=-\dfrac{7}{30}\)

`C(x)=`\(5-8x^4+2x^3+x+5x^4+x^2-4x^3\)
`C(x)= (-8x^4+5x^4)+(2x^3-4x^3)+x^2+x+5`
`C(x)= -3x^4-2x^3+x^2+x+5`
`D(x)=`\(\left(3x^5+x^4-4x\right)-\left(4x^3-7+2x^4+3x^5\right)\)
`D(x)= 3x^5+x^4-4x-4x^3+7-2x^4-3x^5`
`D(x)=(3x^5-3x^5)+(x^4-2x^4)-4x^3-4x+7`
`D(x)=-x^4-4x^3-4x+7`
`P(x)=C(x)+D(x)`
`P(x)=( -3x^4-2x^3+x^2+x+5)+(-x^4-4x^3-4x+7)`
`P(x)=-3x^4-2x^3+x^2+x+5-x^4-4x^3-4x+7`
`P(x)=(-3x^4-x^4)+(-2x^3-4x^3)+x^2+(x-4x)+(5+7)`
`P(x)=-4x^4-6x^3+x^2-3x+12`
`Q(x)=C(x)-D(x)`
`Q(x)=( -3x^4-2x^3+x^2+x+5)-(-x^4-4x^3-4x+7)`
`Q(x)=-3x^4-2x^3+x^2+x+5+x^4+4x^3+4x-7`
`Q(x)=(-3x^4+x^4)+(-2x^3+4x^3)+x^2+(x+4x)+(5-7)`
`Q(x)=-2x^4+2x^3+x^2+5x-2`
`F(x)=Q(x)-(-2x^4+2x^3+x^2-12)`
`F(x)=(-2x^4+2x^3+x^2+5x-2)-(-2x^4+2x^3+x^2-12)`
`F(x)=-2x^4+2x^3+x^2+5x-2+2x^4-2x^3-x^2+12`
`F(x)=(-2x^4+2x^4)+(2x^3-2x^3)+(x^2-x^2)+5x+(-2+12)`
`F(x)=5x+10`
Đặt `5x+10=0`
`\Leftrightarrow 5x=0-10`
`\Leftrightarrow 5x=-10`
`\Leftrightarrow x=-10 \div 5`
`\Leftrightarrow x=-2`
Vậy, nghiệm của đa thức là `x=-2.`

Để thu gọn và sắp xếp các hạng tử của mỗi đa thức, ta cần thực hiện các bước sau:
Đối với đa thức P(x): P(x) = (4x + 1 - x^2 + 2x^3) - (x^4 + 3x - x^3 - 2x^2 - 5) = 4x + 1 - x^2 + 2x^3 - x^4 - 3x + x^3 + 2x^2 + 5 = -x^4 + 3x^3 + x^2 + x + 6
Đối với đa thức Q(x): Q(x) = 3x^4 + 2x^5 - 3x - 5x^4 - x^5 + x + 2x^5 - 1 = 2x^5 - x^5 + 3x^4 - 5x^4 + x - 3x - 1 = x^5 - 2x^4 - 2x - 1
Sau khi thu gọn và sắp xếp các hạng tử, ta có: P(x) = -x^4 + 3x^3 + x^2 + x + 6 Q(x) = x^5 - 2x^4 - 2x - 1
a: \(P\left(x\right)=\left(4x+1-x^2+2x^3\right)-\left(x^4+3x-x^3-2x^2-5\right)\)
\(=4x+1-x^2+2x^3-x^4-3x+x^3+2x^2+5\)
\(=-x^4+3x^3+x^2+x+6\)
\(Q\left(x\right)=3x^4+2x^5-3x-5x^4-x^5+x+2x^5-1\)
\(=\left(2x^5-x^5+2x^5\right)+\left(3x^4-5x^4\right)+\left(-3x+x\right)-1\)
\(=-x^5-2x^4-2x-1\)
b: Bạn ghi lại đề đi bạn

1) \(5^{x+1}-5^x=20\Leftrightarrow5^x\left(5-1\right)=20\Leftrightarrow5^x=5\Leftrightarrow x=1\)
2) \(2^x+2^{x+4}=544\Leftrightarrow2^x\left(1+2^4\right)=544\Leftrightarrow2^x=32\Leftrightarrow x=5\)
3) \(4^{2x+1}+4^{2x}=80\Leftrightarrow4^{2x}\left(4+1\right)=80\Leftrightarrow16^x=16\Leftrightarrow x=1\)
4) \(3^{2x+2}+3^{2x+1}=108\Leftrightarrow3^{2x}\left(3^2+3\right)=108\Leftrightarrow9^x=9\Leftrightarrow x=1\)
5) \(7^{x+3}-7^{x+1}=16464\Leftrightarrow7^x\left(7^3-7\right)=16464\Leftrightarrow7^x=49\Leftrightarrow x=2\)
Tìm x
\(\left|x-4\right|+2x=5\)
\(\left|x-4\right|=5-2x\)
Ta có: \(\left|x-4\right|\ge0\forall x\)
\(\Rightarrow5-2x\ge0\)
\(\Rightarrow2x\le5\)
\(\Rightarrow x\le2,5\)
\(\left|x-4\right|=5-2x\Rightarrow\orbr{\begin{cases}x-4=5-2x\\x-4=2x-5\end{cases}}\Rightarrow\orbr{\begin{cases}x+2x=5+4\\x-2x=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Vì \(x\le2,5\) nên x = 1
Vậy x = 1.
\(|x-4|+2x=5\)
\(|x-4|=5-2x\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=5-2x\\x-4=2x-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=9\\-1x=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)