Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{4}+\dfrac{8}{9}\le\dfrac{x}{36}\le1-\left(\dfrac{3}{8}-\dfrac{5}{6}\right)\\ \Rightarrow\dfrac{41}{36}\le\dfrac{x}{36}\le\dfrac{35}{24}\\ \Rightarrow\dfrac{82}{72}\le\dfrac{2x}{72}\le\dfrac{105}{72}\\ \Rightarrow41\le x< 51,5\)
Câu 1:
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=\dfrac{2}{3}\\x+\dfrac{1}{3}=-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-1\end{matrix}\right.\)
\(1,\Leftrightarrow\left(x+\dfrac{1}{3}\right)^2=\dfrac{4}{9}\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=\dfrac{2}{3}\\x+\dfrac{1}{3}=-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-1\end{matrix}\right.\\ 2,=15:\left(\dfrac{2}{3}\right)^4\cdot\left(\dfrac{2}{3}\right)^6:\left(\dfrac{2}{3}\right)^9=15\cdot\left(\dfrac{2}{3}\right)^{-7}=15\cdot\dfrac{3^7}{2^7}=15\cdot\dfrac{2187}{128}=\dfrac{32805}{128}\)
\(\dfrac{x+4}{8}+\dfrac{x+3}{9}=\dfrac{x+2}{10}+\dfrac{x+1}{11}\)
\(\Leftrightarrow\left(\dfrac{x+4}{8}+1\right)+\left(\dfrac{x+3}{9}+1\right)=\left(\dfrac{x+2}{10}+1\right)+\left(\dfrac{x+1}{11}+1\right)\)
\(\Leftrightarrow\dfrac{x+12}{8}+\dfrac{x+12}{9}-\dfrac{x+12}{10}-\dfrac{x+12}{11}=0\)
\(\Leftrightarrow\left(x+12\right)\left(\dfrac{1}{8}+\dfrac{1}{9}-\dfrac{1}{10}-\dfrac{1}{11}\right)=0\)
\(\Leftrightarrow x=-12\)( do \(\dfrac{1}{8}+\dfrac{1}{9}-\dfrac{1}{10}-\dfrac{1}{11}\ne0\))
\(\dfrac{x+4}{8}+\dfrac{x+3}{9}=\dfrac{x+2}{10}+\dfrac{x+1}{11}\)
\(\dfrac{x+4}{8}+1+\dfrac{x+3}{9}+1=\dfrac{x+2}{10}+1+\dfrac{x+1}{11}+1\)
\(\dfrac{x+12}{8}+\dfrac{x+12}{9}=\dfrac{x+12}{10}+\dfrac{x+12}{11}\)
\(\dfrac{x+12}{8}+\dfrac{x+12}{9}-\dfrac{x+12}{10}-\dfrac{x+12}{11}=0\)
\(\Rightarrow\left(x+12\right).\left(\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}\right)=0\)
Vì \(\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}\ne0\) nên \(x+12=0\)
\(\Rightarrow x=-12\)
\(-\dfrac{3}{4}\left(\dfrac{8}{9}-x\right)+\dfrac{3}{5}=-\dfrac{2}{3}.\dfrac{1}{2}=-\dfrac{1}{3}\\ \Leftrightarrow-\dfrac{3}{4}\left(\dfrac{8}{9}-x\right)=-\dfrac{1}{3}-\dfrac{3}{5}=-\dfrac{14}{15}\\ \Leftrightarrow\dfrac{8}{9}-x=\dfrac{56}{45}\\ \Leftrightarrow x=\dfrac{8}{9}-\dfrac{56}{45}=-\dfrac{16}{45}\)
Ta có : \(PT\Leftrightarrow-\dfrac{3}{4}\left(\dfrac{8}{9}-x\right)=-\dfrac{2}{3}.\dfrac{1}{2}-\dfrac{3}{5}=-\dfrac{14}{15}\)
\(\Rightarrow\dfrac{8}{9}-x=\dfrac{-\dfrac{14}{15}}{-\dfrac{3}{4}}=\dfrac{56}{45}\)
\(\Rightarrow x=\dfrac{8}{9}-\dfrac{56}{45}=-\dfrac{16}{45}\)
Vậy ...
a:=>3x=15
=>x=5
b: =>x+3=0,96
=>x=-2,04
c: =>x^2=36
=>x=6 hoặc x=-6
`a, 3/4=(3x)/20`
`3x*4=3*20`
`3x*4=60`
`3x=60 \div 4`
`3x=15`
`x=15 \div 3`
`x=5`
`b, (1,2)/(x+3)=5/4`
`1,2*4=(x+3)*5`
`4,8=(x+3)*5`
`x+3= 4,8 \div 5`
`x+3=0,96`
`x=0,96-3`
`x=-2,04`
`c, (x^2)/32=9/8`
`x^2*8=32*9`
`x^2*8=288`
`x^2=288 \div 8`
`x^2=36`
`x^2=(+-6)^2`
`-> \text {x= 6 hoặc -6}`
Để giải phương trình, ta sẽ thực hiện các bước sau: Bước 1: Giải các phép tính trong phương trình. 32x^(-1) + 2.9x^(-1) = 405(13)^(-1) + 5.(13)^2 + 1 = 1493(31)^(-1) + 5.(31)^2 + 1 = 9314(35)^(-1) Bước 2: Rút gọn các số hạng. 32x^(-1) + 2.9x^(-1) = 405/13 + 5.(13)^2 + 1 = 1493/31 + 5.(31)^2 + 1 = 9314/35 Bước 3: Đưa các số hạng về cùng mẫu số. 32x^(-1) + 2.9x^(-1) = (405/13).(31/31) + 5.(13)^2 + 1 = (1493/31).(13/13) + 5.(31)^2 + 1 = 9314/35 Bước 4: Tính toán các số hạng. 32x^(-1) + 2.9x^(-1) = 405.(31)/13.(31) + 5.(13)^2 + 1 = 1493.(13)/31.(13) + 5.(31)^2 + 1 = 9314/35 Bước 5: Tính tổng các số hạng. 32x^(-1) + 2.9x^(-1) = 405.(31)/403 + 5.(13)^2 + 1 = 1493.(13)/403 + 5.(31)^2 + 1 = 9314/35 Bước 6: Đưa phương trình về dạng chuẩn. 32x^(-1) + 2.9x^(-1) - 9314/35 = 0 Bước 7: Giải phương trình. Để giải phương trình này, ta cần biến đổi nó về dạng tương đương. Nhân cả hai vế của phương trình với 35 để loại bỏ mẫu số. 35.(32x^(-1) + 2.9x^(-1) - 9314/35) = 0 1120x^(-1) + 101.5x^(-1) - 9314 = 0 Bước 8: Tìm giá trị của x. Để tìm giá trị của x, ta cần giải phương trình này. Tuy nhiên, phương trình này không thể giải được vì x có mũ là -1.
\(\dfrac{19}{8}\times\dfrac{16}{9}+\dfrac{19}{8}\times\dfrac{2}{9}-\dfrac{19}{8}\)
\(=\dfrac{19}{8}\times\left(\dfrac{16}{9}+\dfrac{2}{9}-1\right)\)
\(=\dfrac{19}{8}\times1\)
\(=\dfrac{19}{8}\)
\(=\dfrac{19}{8}.\dfrac{16}{9}+\dfrac{19}{8}.\dfrac{2}{9}-\dfrac{19}{8}.1=\dfrac{19}{8}.\left(\dfrac{16}{9}+\dfrac{2}{9}-1\right)\)
\(=\dfrac{19}{8}.1=\dfrac{19}{8}\)
\(\left(3-x\right)^3=-\dfrac{27}{64}\)
\(\left(3-x\right)^3=\left(\dfrac{-3}{4}\right)^3\)
\(=>3-x=\dfrac{-3}{4}\)
\(x=3-\dfrac{-3}{4}=\dfrac{12}{4}+\dfrac{3}{4}\)
\(x=\dfrac{15}{4}\)
________
\(\left(x-5\right)^3=\dfrac{1}{-27}\)
\(\left(x-5\right)^3=\left(\dfrac{-1}{3}\right)^3\)
\(=>x-5=\dfrac{-1}{3}\)
\(x=\dfrac{-1}{3}+5=\dfrac{-1}{3}+\dfrac{15}{3}\)
\(x=\dfrac{14}{3}\)
_____________
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8}\)
\(\left(x-\dfrac{1}{2}\right)^3=\left(\dfrac{3}{2}\right)^3\)
\(=>x-\dfrac{1}{2}=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}+\dfrac{1}{2}\)
\(x=2\)
________
\(\left(2x-1\right)^2=\dfrac{1}{4}\)
\(\left(2x-1\right)^2=\left(\dfrac{1}{2}\right)^2\) hoặc \(\left(2x-1\right)^2=\left(\dfrac{-1}{2}\right)^2\)
\(=>2x-1=\dfrac{1}{2}\) \(2x-1=\dfrac{-1}{2}\)
\(2x=\dfrac{1}{2}+1=\dfrac{1}{2}+\dfrac{2}{2}\) \(2x=\dfrac{-1}{2}+1=\dfrac{-1}{2}+\dfrac{2}{2}\)
\(2x=\dfrac{3}{2}\) \(2x=\dfrac{1}{2}\)
\(x=\dfrac{3}{2}:2=\dfrac{3}{2}.\dfrac{1}{2}\) \(x=\dfrac{1}{2}:2=\dfrac{1}{2}.\dfrac{1}{2}\)
\(x=\dfrac{3}{4}\) \(x=\dfrac{1}{4}\)
____________
\(\left(2-3x\right)^2=\dfrac{9}{4}\)
\(\left(2-3x\right)^2=\left(\dfrac{3}{2}\right)^2\) hoặc \(\left(2-3x\right)^2=\left(\dfrac{-3}{2}\right)^2\)
\(=>2-3x=\dfrac{3}{2}\) \(2-3x=\dfrac{-3}{2}\)
\(3x=2-\dfrac{3}{2}=\dfrac{4}{2}-\dfrac{3}{2}\) \(3x=2-\dfrac{-3}{2}=\dfrac{4}{2}+\dfrac{3}{2}\)
\(3x=\dfrac{1}{2}\) \(3x=\dfrac{7}{2}\)
\(x=\dfrac{1}{2}.\dfrac{1}{3}\) \(x=\dfrac{7}{2}.\dfrac{1}{3}\)
\(x=\dfrac{1}{6}\) \(x=\dfrac{7}{6}\)
______________
\(\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\) -> Kiểm tra đề câu này
(3-x)3=(-\(\dfrac{3}{4}\))3
3-x=-\(\dfrac{3}{4}\)
x=3-(-\(\dfrac{3}{4}\))
x=\(\dfrac{15}{4}\)
\(a,3-x=x+1,8\)
\(\Rightarrow-x-x=1,8-3\)
\(\Rightarrow-2x=-1,2\)
\(\Rightarrow x=0,6\)
\(b,2x-5=7x+35\)
\(\Rightarrow2x-7x=35+5\)
\(\Rightarrow-5x=40\)
\(\Rightarrow x=-8\)
\(c,2\left(x+10\right)=3\left(x-6\right)\)
\(\Rightarrow2x+20=3x-18\)
\(\Rightarrow2x-3x=-18-20\)
\(\Rightarrow-x=-38\)
\(\Rightarrow x=38\)
\(d,8\left(x-\dfrac{3}{8}\right)+1=6\left(\dfrac{1}{6}+x\right)+x\)
\(\Rightarrow8x-3+1=1+6x+x\)
\(\Rightarrow8x-3=7x\)
\(\Rightarrow8x-7x=3\)
\(\Rightarrow x=3\)
\(e,\dfrac{2}{9}-3x=\dfrac{4}{3}-x\)
\(\Rightarrow-3x+x=\dfrac{4}{3}-\dfrac{2}{9}\)
\(\Rightarrow-2x=\dfrac{10}{9}\)
\(\Rightarrow x=-\dfrac{5}{9}\)
\(g,\dfrac{1}{2}x+\dfrac{5}{6}=\dfrac{3}{4}x-\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{2}x-\dfrac{3}{4}x=-\dfrac{1}{2}-\dfrac{5}{6}\)
\(\Rightarrow-\dfrac{1}{4}x=-\dfrac{4}{3}\)
\(\Rightarrow x=\dfrac{16}{3}\)
\(h,x-4=\dfrac{5}{6}\left(6-\dfrac{6}{5}x\right)\)
\(\Rightarrow x-4=5-x\)
\(\Rightarrow x+x=5+4\)
\(\Rightarrow2x=9\)
\(\Rightarrow x=\dfrac{9}{2}\)
\(k,7x^2-11=6x^2-2\)
\(\Rightarrow7x^2-6x^2=-2+11\)
\(\Rightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
\(m,5\left(x+3\cdot2^3\right)=10^2\)
\(\Rightarrow5\left(x+24\right)=100\)
\(\Rightarrow x+24=20\)
\(\Rightarrow x=-4\)
\(n,\dfrac{4}{9}-\left(\dfrac{1}{6^2}\right)=\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{4}{9}-\dfrac{1}{36}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{5}{12}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2=0\)
\(\Rightarrow x-\dfrac{2}{3}=0\Rightarrow x=\dfrac{2}{3}\)
#\(Urushi\text{☕}\)
\(\Rightarrow x+3=8\Rightarrow x=5\Rightarrow y=\dfrac{1}{3}x=\dfrac{5}{3}\)
\(\left\{{}\begin{matrix}x=3y\\x+\dfrac{9}{3}=8\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3y\\x+3=8\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5=3y\\x=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{3}\\x=5\end{matrix}\right.\)