K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐXXĐ : \(\hept{\begin{cases}x\ne2\\x\ne4\end{cases}}\)

\(\frac{x-3}{x-2}-\frac{x-2}{x-4}=\frac{16}{5}\) 

\(\frac{5\left(x-3\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)5}-\frac{\left(x-2\right)\left(x-2\right)5}{\left(x-4\right)\left(x-2\right)5}=\frac{16\left(x-2\right)\left(x-4\right)}{5\left(x-4\right)\left(x-2\right)}\)

\(5\left(x-3\right)\left(x-4\right)-\left(x-2\right)\left(x-2\right)5=16\left(x-2\right)\left(x-4\right)\)

\(-15x+40=16x^2-96x+128\)

\(-15x+40-16x^2+96x-128=0\)

\(-88x+88+16x^2=0\)

=> vô nghiệm 

1: =>x^2+4x-21=0

=>(x+7)(x-3)=0

=>x=3 hoặc x=-7

2: =>(2x-5-4)(2x-5+4)=0

=>(2x-9)(2x-1)=0

=>x=9/2 hoặc x=1/2

3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15

=>-9x^2+27x+9x^2+18x+9=15

=>18x=15-9-27=-21

=>x=-7/6

6: =>4x^2+4x+1-4x^2-16x-16=9

=>-12x-15=9

=>-12x=24

=>x=-2

7: =>x^2+6x+9-x^2-4x+32=1

=>2x+41=1

=>2x=-40

=>x=-20

a: \(\dfrac{96}{\left(x-4\right)\left(x+4\right)}+\dfrac{7+x}{4-x}=\dfrac{2x-1}{x+4}-3\)

\(\Leftrightarrow\dfrac{96}{\left(x-4\right)\left(x+4\right)}-\dfrac{\left(x+7\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{\left(2x-1\right)\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}-\dfrac{3\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}\)

Suy ra: \(96-x^2-11x-28=2x^2-9x+4-3\left(x^2-16\right)\)

\(\Leftrightarrow-x^2-11x+68=2x^2-9x+4-3x^2+48\)

\(\Leftrightarrow-x^2-11x+68=-x^2-9x+52\)

=>-11x+68=-9x+52

=>-2x=-16

hay x=8(nhận)

b: \(\dfrac{2}{x-1}+\dfrac{3}{x-2}=\dfrac{3}{x-3}\)

\(\Leftrightarrow2\left(x-2\right)\left(x-3\right)+3\left(x-1\right)\left(x-3\right)=3\left(x-1\right)\left(x-2\right)\)

\(\Leftrightarrow2\left(x^2-5x+6\right)+3\left(x^2-4x+3\right)=3\left(x^2-3x+2\right)\)

\(\Leftrightarrow2x^2-10x+12+3x^2-12x+9=3x^2-9x+6\)

\(\Leftrightarrow5x^2-22x+21-3x^2+9x-6=0\)

\(\Leftrightarrow2x^2-13x+15=0\)

\(\Leftrightarrow2x^2-10x-3x+15=0\)

=>(x-5)(2x-3)=0

=>x=5(nhận) hoặc x=3/2(nhận)

5 tháng 3 2020

\(ĐKXĐ:x\ne2;x\ne4\)

\(\frac{x-3}{x-2}-\frac{x-2}{x-4}=\frac{16}{5}\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x-4\right)-\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}=\frac{16}{5}\)

\(\Leftrightarrow\frac{x^2-7x+12-x^2+4x-4}{x^2-6x+8}=\frac{16}{5}\)

\(\Leftrightarrow\frac{-3x+8}{x^2-6x+8}=\frac{16}{5}\)

\(\Leftrightarrow16x^2-96x+128=-15x-40\)

\(\Leftrightarrow16x^2-81x+168=0\)

\(\Delta=81^2-4.16.168=-4191< 0\)

pt vô nghiệm

5 tháng 3 2020

\(ĐKXĐ:x\ne2;x\ne4\)

\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=-1\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x-4\right)+\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}=-1\)

\(\Leftrightarrow\frac{x^2-7x+12+x^2-4x+4}{x^2-6x+8}=-1\)

\(\Leftrightarrow\frac{2x^2-11x+16}{x^2-6x+8}=-1\)

\(\Leftrightarrow2x^2-11x+16=-x^2+6x-8\)

\(\Leftrightarrow3x^2-17x+24=0\)

Ta có \(\Delta=17^2-4.3.24=1,\sqrt{\Delta}=1\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{17+1}{6}=3\\x=\frac{17-1}{6}=\frac{8}{3}\end{cases}}\)

24 tháng 8 2020

a) (x - 1)3 + (2 - x)(4 + 2x + x2) + 3x(x + 2) = 16

x3 - 3x2 + 3x - 1 + 8 - x3 + 3x2 + 6x - 16 = 0

9x - 9 = 0

9x = 9

x = 1

Vậy x ∈ {1}

b) ( x + 2)(x2 - 2x + 4) - x(x2 - 2) = 16

x3 + 8 - x3 + 2x - 16 = 0

2x - 8 = 0

2x = 8

x = 4

Vậy x ∈ {4}

c) x(x - 5)(x + 5) - (x + 2)(x2 - 2x + 4) = 17

x3 - 25x - x3 - 8 - 17 = 0

-25x - 25 = 0

-25x = 25

x = -1

Vậy x ∈ {1}

d) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x + 1)2 = 15

x3 - 9x2 + 27x - 27 - x3 + 27 + 9x2 + 18x + 9 - 15 = 0

45x - 6 = 0

45x = 6

x = \(\frac{2}{15}\)

Vậy x ∈ {\(\frac{2}{15}\)}

1) Ta có: \(5\left(x-3\right)\left(x-7\right)-\left(5x+1\right)\left(x-2\right)=-8\)

\(\Leftrightarrow5\left(x^2-10x+21\right)-\left(5x^2-10x+x-2\right)=-8\)

\(\Leftrightarrow5x^2-50x+105-5x^2+9x+2+8=0\)

\(\Leftrightarrow-41x=-115\)

hay \(x=\dfrac{115}{41}\)

2) Ta có: \(x\left(x+1\right)\left(x+2\right)-\left(x+4\right)\left(3x-5\right)=84-5x\)

\(\Leftrightarrow x\left(x^2+3x+2\right)-\left(3x^2+7x-20\right)=84-5x\)

\(\Leftrightarrow x^3+3x^2+2x-3x^2-7x+20-84+5x=0\)

\(\Leftrightarrow x^3=64\)

hay x=4

3) Ta có: \(\left(9x^2-5\right)\left(x+3\right)-3x^2\left(3x+9\right)=\left(x-5\right)\left(x+4\right)-x\left(x-11\right)\)

\(\Leftrightarrow9x^3+27x^2-5x-15-9x^3-27x^2=x^2-x-20-x^2+11x\)

\(\Leftrightarrow-5x-15=10x-20\)

\(\Leftrightarrow-5x-10x=-20+15\)

\(\Leftrightarrow x=\dfrac{-5}{-15}=\dfrac{1}{3}\)

22 tháng 10 2023

1:

a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)

\(=4x^2-20x+25-4x^2-12x\)

=-32x+25

b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)

\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)

c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)

\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)

\(=\left(-3\right)^2+5\left(2x-3\right)\)

\(=9+10x-15=10x-6\)

2: 

a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)

\(=9x^2-12x+4-5x^2+20x+4x-4\)

\(=4x^2+12x\)

b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)

\(=27-x^3+x^3-9x^2+27x-27\)

\(=-9x^2+27x\)

c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)

\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)

\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)

\(=-5\left(x^2-16\right)=-5x^2+80\)

a: \(\Leftrightarrow\left(2-x\right)\left(x-3\right)+\left(x-1\right)\left(x+3\right)=-4x\)

\(\Leftrightarrow2x-6-x^2+3x+x^2+3x-x-3=-4x\)

=>7x-9=-4x

=>11x=9

hay x=9/11

b: \(\Leftrightarrow\left(5-x\right)\left(x-4\right)+\left(x+2\right)\left(x+4\right)=-3x\)

\(\Leftrightarrow5x-20-x^2+4x+x^2+6x+8=-3x\)

=>15x-12=-3x

=>18x=12

hay x=2/3

1: =(x+y-3x)(x+y+3x)

=(-2x+y)(4x+y)

2: =(3x-1-4)(3x-1+4)

=(3x+3)(3x-5)

=3(x+1)(3x-5)

3: =(2x)^2-(x^2+1)^2

=-[(x^2+1)^2-(2x)^2]

=-(x^2+1-2x)(x^2+1+2x)

=-(x-1)^2(x+1)^2

4: =(2x+1+x-1)(2x+1-x+1)

=3x(x+2)

5: =[(x+1)^2-(x-1)^2][(x+1)^2+(x-1)^2]

=(2x^2+2)*4x

=8x(x^2+1)

6: =(5x-5y)^2-(4x+4y)^2

=(5x-5y-4x-4y)(5x-5y+4x+4y)

=(x-9y)(9x-y)

7: =(x^2+xy+y^2+xy)(x^2+xy-y^2-xy)

=(x^2+2xy+y^2)(x^2-y^2)

=(x+y)^3*(x-y)

8: =(x^2+4y^2-20-4xy+16)(x^2+4y^2-20+4xy-16)

=[(x-2y)^2-4][(x+2y)^2-36]

=(x-2y-2)(x-2y+2)(x+2y-6)(x+2y+6)