Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: =>x^2+4x-21=0
=>(x+7)(x-3)=0
=>x=3 hoặc x=-7
2: =>(2x-5-4)(2x-5+4)=0
=>(2x-9)(2x-1)=0
=>x=9/2 hoặc x=1/2
3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15
=>-9x^2+27x+9x^2+18x+9=15
=>18x=15-9-27=-21
=>x=-7/6
6: =>4x^2+4x+1-4x^2-16x-16=9
=>-12x-15=9
=>-12x=24
=>x=-2
7: =>x^2+6x+9-x^2-4x+32=1
=>2x+41=1
=>2x=-40
=>x=-20
a: \(\dfrac{96}{\left(x-4\right)\left(x+4\right)}+\dfrac{7+x}{4-x}=\dfrac{2x-1}{x+4}-3\)
\(\Leftrightarrow\dfrac{96}{\left(x-4\right)\left(x+4\right)}-\dfrac{\left(x+7\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{\left(2x-1\right)\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}-\dfrac{3\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}\)
Suy ra: \(96-x^2-11x-28=2x^2-9x+4-3\left(x^2-16\right)\)
\(\Leftrightarrow-x^2-11x+68=2x^2-9x+4-3x^2+48\)
\(\Leftrightarrow-x^2-11x+68=-x^2-9x+52\)
=>-11x+68=-9x+52
=>-2x=-16
hay x=8(nhận)
b: \(\dfrac{2}{x-1}+\dfrac{3}{x-2}=\dfrac{3}{x-3}\)
\(\Leftrightarrow2\left(x-2\right)\left(x-3\right)+3\left(x-1\right)\left(x-3\right)=3\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow2\left(x^2-5x+6\right)+3\left(x^2-4x+3\right)=3\left(x^2-3x+2\right)\)
\(\Leftrightarrow2x^2-10x+12+3x^2-12x+9=3x^2-9x+6\)
\(\Leftrightarrow5x^2-22x+21-3x^2+9x-6=0\)
\(\Leftrightarrow2x^2-13x+15=0\)
\(\Leftrightarrow2x^2-10x-3x+15=0\)
=>(x-5)(2x-3)=0
=>x=5(nhận) hoặc x=3/2(nhận)
\(ĐKXĐ:x\ne2;x\ne4\)
\(\frac{x-3}{x-2}-\frac{x-2}{x-4}=\frac{16}{5}\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x-4\right)-\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}=\frac{16}{5}\)
\(\Leftrightarrow\frac{x^2-7x+12-x^2+4x-4}{x^2-6x+8}=\frac{16}{5}\)
\(\Leftrightarrow\frac{-3x+8}{x^2-6x+8}=\frac{16}{5}\)
\(\Leftrightarrow16x^2-96x+128=-15x-40\)
\(\Leftrightarrow16x^2-81x+168=0\)
\(\Delta=81^2-4.16.168=-4191< 0\)
pt vô nghiệm
\(ĐKXĐ:x\ne2;x\ne4\)
\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=-1\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x-4\right)+\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Leftrightarrow\frac{x^2-7x+12+x^2-4x+4}{x^2-6x+8}=-1\)
\(\Leftrightarrow\frac{2x^2-11x+16}{x^2-6x+8}=-1\)
\(\Leftrightarrow2x^2-11x+16=-x^2+6x-8\)
\(\Leftrightarrow3x^2-17x+24=0\)
Ta có \(\Delta=17^2-4.3.24=1,\sqrt{\Delta}=1\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{17+1}{6}=3\\x=\frac{17-1}{6}=\frac{8}{3}\end{cases}}\)
a) (x - 1)3 + (2 - x)(4 + 2x + x2) + 3x(x + 2) = 16
x3 - 3x2 + 3x - 1 + 8 - x3 + 3x2 + 6x - 16 = 0
9x - 9 = 0
9x = 9
x = 1
Vậy x ∈ {1}
b) ( x + 2)(x2 - 2x + 4) - x(x2 - 2) = 16
x3 + 8 - x3 + 2x - 16 = 0
2x - 8 = 0
2x = 8
x = 4
Vậy x ∈ {4}
c) x(x - 5)(x + 5) - (x + 2)(x2 - 2x + 4) = 17
x3 - 25x - x3 - 8 - 17 = 0
-25x - 25 = 0
-25x = 25
x = -1
Vậy x ∈ {1}
d) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x + 1)2 = 15
x3 - 9x2 + 27x - 27 - x3 + 27 + 9x2 + 18x + 9 - 15 = 0
45x - 6 = 0
45x = 6
x = \(\frac{2}{15}\)
Vậy x ∈ {\(\frac{2}{15}\)}
1) Ta có: \(5\left(x-3\right)\left(x-7\right)-\left(5x+1\right)\left(x-2\right)=-8\)
\(\Leftrightarrow5\left(x^2-10x+21\right)-\left(5x^2-10x+x-2\right)=-8\)
\(\Leftrightarrow5x^2-50x+105-5x^2+9x+2+8=0\)
\(\Leftrightarrow-41x=-115\)
hay \(x=\dfrac{115}{41}\)
2) Ta có: \(x\left(x+1\right)\left(x+2\right)-\left(x+4\right)\left(3x-5\right)=84-5x\)
\(\Leftrightarrow x\left(x^2+3x+2\right)-\left(3x^2+7x-20\right)=84-5x\)
\(\Leftrightarrow x^3+3x^2+2x-3x^2-7x+20-84+5x=0\)
\(\Leftrightarrow x^3=64\)
hay x=4
3) Ta có: \(\left(9x^2-5\right)\left(x+3\right)-3x^2\left(3x+9\right)=\left(x-5\right)\left(x+4\right)-x\left(x-11\right)\)
\(\Leftrightarrow9x^3+27x^2-5x-15-9x^3-27x^2=x^2-x-20-x^2+11x\)
\(\Leftrightarrow-5x-15=10x-20\)
\(\Leftrightarrow-5x-10x=-20+15\)
\(\Leftrightarrow x=\dfrac{-5}{-15}=\dfrac{1}{3}\)
1:
a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)
\(=4x^2-20x+25-4x^2-12x\)
=-32x+25
b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)
\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)
c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)
\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)
\(=\left(-3\right)^2+5\left(2x-3\right)\)
\(=9+10x-15=10x-6\)
2:
a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)
\(=9x^2-12x+4-5x^2+20x+4x-4\)
\(=4x^2+12x\)
b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)
\(=27-x^3+x^3-9x^2+27x-27\)
\(=-9x^2+27x\)
c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)
\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)
\(=-5\left(x^2-16\right)=-5x^2+80\)
a: \(\Leftrightarrow\left(2-x\right)\left(x-3\right)+\left(x-1\right)\left(x+3\right)=-4x\)
\(\Leftrightarrow2x-6-x^2+3x+x^2+3x-x-3=-4x\)
=>7x-9=-4x
=>11x=9
hay x=9/11
b: \(\Leftrightarrow\left(5-x\right)\left(x-4\right)+\left(x+2\right)\left(x+4\right)=-3x\)
\(\Leftrightarrow5x-20-x^2+4x+x^2+6x+8=-3x\)
=>15x-12=-3x
=>18x=12
hay x=2/3
1: =(x+y-3x)(x+y+3x)
=(-2x+y)(4x+y)
2: =(3x-1-4)(3x-1+4)
=(3x+3)(3x-5)
=3(x+1)(3x-5)
3: =(2x)^2-(x^2+1)^2
=-[(x^2+1)^2-(2x)^2]
=-(x^2+1-2x)(x^2+1+2x)
=-(x-1)^2(x+1)^2
4: =(2x+1+x-1)(2x+1-x+1)
=3x(x+2)
5: =[(x+1)^2-(x-1)^2][(x+1)^2+(x-1)^2]
=(2x^2+2)*4x
=8x(x^2+1)
6: =(5x-5y)^2-(4x+4y)^2
=(5x-5y-4x-4y)(5x-5y+4x+4y)
=(x-9y)(9x-y)
7: =(x^2+xy+y^2+xy)(x^2+xy-y^2-xy)
=(x^2+2xy+y^2)(x^2-y^2)
=(x+y)^3*(x-y)
8: =(x^2+4y^2-20-4xy+16)(x^2+4y^2-20+4xy-16)
=[(x-2y)^2-4][(x+2y)^2-36]
=(x-2y-2)(x-2y+2)(x+2y-6)(x+2y+6)
ĐXXĐ : \(\hept{\begin{cases}x\ne2\\x\ne4\end{cases}}\)
\(\frac{x-3}{x-2}-\frac{x-2}{x-4}=\frac{16}{5}\)
\(\frac{5\left(x-3\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)5}-\frac{\left(x-2\right)\left(x-2\right)5}{\left(x-4\right)\left(x-2\right)5}=\frac{16\left(x-2\right)\left(x-4\right)}{5\left(x-4\right)\left(x-2\right)}\)
\(5\left(x-3\right)\left(x-4\right)-\left(x-2\right)\left(x-2\right)5=16\left(x-2\right)\left(x-4\right)\)
\(-15x+40=16x^2-96x+128\)
\(-15x+40-16x^2+96x-128=0\)
\(-88x+88+16x^2=0\)
=> vô nghiệm