Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{x+1}+\frac{2}{x+2}=\frac{5x+4}{x^2+3x+2}.\)ĐKXĐ: \(x\ne-1;-2\)
\(\Leftrightarrow\frac{3\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\frac{5x+4}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow3x+6+2x+2=5x+4\)
\(\Leftrightarrow3x+2x-5x=-6-2+4\)
\(\Leftrightarrow0x=-4\)
=> PT vô nghiệm
\(2;\frac{2}{3x-1}-\frac{15}{6x^2-x-1}=\frac{3}{2x-1}\)
\(\Leftrightarrow\frac{2\left(2x-1\right)}{\left(2x-1\right)\left(3x-1\right)}-\frac{15}{6x^2+3x-2x-1}=\frac{3\left(3x-1\right)}{\left(2x-1\right)\left(3x-1\right)}\)
\(\Leftrightarrow\frac{4x-2-15}{\left(2x-1\right)\left(3x-1\right)}=\frac{9x-3}{\left(2x-1\right)\left(3x-1\right)}\)
\(\Leftrightarrow4x-2-15=9x-3\)
\(\Leftrightarrow4x-9x=2+15-3\)
\(\Leftrightarrow-5x=14\)
.....
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)
\(x^3-2x^2+4x+2x^2-4x+8-x^3+2x=15\)
\(2x+8=15\)
\(2x=7\)
\(x=\frac{7}{2}\)
\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\)
\(\Leftrightarrow9x+7=17\)
\(\Leftrightarrow9x=10\)
\(\Leftrightarrow x=\frac{10}{9}\)
(x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x + 1)2 = 15
⇔(x3-6x2+9x2-27)-(x3-27)+9(x2+2x+1)=15
⇔x3+3x2-27-x3+27+9x2+18x+9=15
⇔12x2+18x-6=0
⇔12x2+12x+6x-6=0
⇔(12x2+12x)-(6x+6)=0
⇔12x(x+1)-6(x+1)=0
⇔(x+1)(12x-6)=0
⇔\(\left[{}\begin{matrix}x+1=0\\12x-6=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=-1\\12x=6\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)
(x-3)^3-(x-3)(x^2+3x+9)+9(x+1)^2=15
(x^3-3•x^2•3+3•x•3^2-3^3)-(x^3+3x^2+9x-27)+9(x^2+2•x•1+1^2)=15
(x^3-9x^2+27x-27)-(x^3-27)+9(x^2+2x+1)=15
x^3-9x^2+27x -27 -x^3+27+9x^2+18x+9=15
x^3-9x^2+27x -x^3+9x^2+18x=15-27+27-9
45x=6
x=6/45
x=2/15
câu này sai đề (x -3)3 -(x-3)(x2 +3x+9) +9(x+1)2 = 15
\(a,\left(x-2\right)^2-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x=-10\)
\(\Leftrightarrow x=-\dfrac{5}{12}\)
Vậy:....
\(b,\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25^2+9=30\)
\(\Leftrightarrow10x=20\)
\(\Rightarrow x=2\)
Vậy :....
\(c,\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)\(\Leftrightarrow x^3+27-x\left(x^2-4\right)=15\)
\(\Leftrightarrow x^3+27-x^3+4x=15\)
\(\Leftrightarrow4x=15-27=-12\)
\(\Leftrightarrow x=-3\)
vậy : .....
3(x + 1)2 - 3x(x + 2) = 1
<=> 3x2 + 6x + 3 - 3x2 - 6x = 1
<=> 3 = 1 (vô lí)
Vậy phương trình vô nghiệm.
(x - 1)3 - (x + 3)(x2 - 3x + 9) + 3(x2 - 4) = 2
<=> x3 - 3x2 + 3x - 1 - x3 - 27 + 3x2 - 12 = 2
<=> 3x - 40 = 2
<=> 3x = 42
<=> x = 14
Vậy S = { 14 }.
(x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15
<=> x3 + 8 - x3 - 2x = 15
<=> - 2x + 8 = 15
<=> - 2x = 7
<=> x = - 7/2
Vậy S = { - 7/2 }.
Ta có: \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)
⇔ \(x^3-9x^2\)+ 27x − 27 −\(x^3\)+ 27 +\(9x^2\)+ 18x + 9 = 15
⇔ 45x = 6
hay \(x=\frac{2}{15}\)
x = 2/15