K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2023

\(...\Rightarrow x^3-9x^2+27x-27-\left(x^3-27\right)+9\left(x^2+2x+1\right)=15\)

\(\Rightarrow x^3-9x^2+27x-27-x^3+27+9x^2+18x+9=15\)

\(\Rightarrow45x+9=15\Rightarrow45x=6\Rightarrow x=\dfrac{6}{45}=\dfrac{2}{15}\)

17 tháng 7 2023

\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)-3x\left(1-x\right)\)

\(=x^3-9x^2+27x-27-\left(x^3-27\right)-3x+3x^2\)

\(=x^3-9x^2+27x-27-x^3+27-3x+3x^2\)

\(=24x-6x^2\)

Hình như đề có chỗ sai sót ở đâu đó bạn .

29 tháng 11 2023

vãi ò ông ngx thành đạt chép sai đầu bài r (x-1)3 cchchuchưchứchứ kkoko pphphaphaiphảiphải (x-3)33

 

 

17 tháng 7 2023

\(\left(x-1\right)^3-\left(x-3\right)\left(x^2+3x+9\right)-3x\left(1-x\right)\)

\(=x^3-3x^2+3x-1-\left(x^3-27\right)-3x+3x^2\)

\(=x^3-3x^2+3x-1-x^3+27-3x+3x^2\)

\(=26\Rightarrow dpcm\)

2 tháng 7 2017

\(1,\left(2-x\right)^2-9=0\)

\(\Leftrightarrow\left(2-x-9\right)\left(2-x+9\right)=0\)

\(\Leftrightarrow\left(-7-x\right)\left(11-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\11-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=11\end{matrix}\right.\)

\(b,\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)=15-9\left(x+1\right)^2\)\(\Leftrightarrow x^3-9x^2+27x-27-x^3-27=15-9x^2-18x-9\)\(\Leftrightarrow x^3-9x^2+27x-x^3+9x^2+18x=15+27+27\)\(\Leftrightarrow45x=69\Rightarrow x=\dfrac{23}{15}\)

2 tháng 7 2017

1. \(\left(2-x\right)^2-9=0\)

\(\left(2-x\right)^2=9\)

\(\left(2-x\right)^2=3^2\)

\(2-x=3\)

\(-x=-1\Rightarrow x=1\)

11 tháng 7 2016

= x3 + 33 -x(x2 -1) -27 =0 ( tổng các lập phuong)

x =0 

CX100%

11 tháng 7 2016

bạn chỉ cần phá hết hằng đẳng thức ra thôi 

( x - 1)3 - (x + 3) . (x2 - 3x + 9) + 3 .  (x + 2) - (x - 2)  = 2

=>x3-3x2.(-1)+3x.(-1)2-(-1)3-x(x2-3x+9)-3(x2-3x+9)+3x+6-x+2=2

x3+3x2+3x+1-x3+3x2-9x-3x2+9x-27+3x+6-x+2=2

(x3-x3)+(3x2+3x2-3x2)+(3x-9x+9x+3x-x)+(1-27+6+2)=2

3x2-5x-18=2

x(3x-5)=20

Thử lần lượt nha bạn

Bài 2

(x+y+z)2-2(x+y+z)(x+y)+(x+y)2

=(x+y+z)2-2x2-4xy-2xz-2yz+x2+2.xy+y2

=z2+(y+x)2z+y2+2xy+x2-2x2-4xy-2z(x+y)+x2+2xy+y2

=z2+(x+y)2z-2z(x+y)+(y2+y2)+(2xy+2xy-4xy)+(x2-2x2+x2)

=z2+2y2

21 tháng 3 2022

\(1,\dfrac{3x+2}{6}-\dfrac{3x-2}{4}=\dfrac{15}{8}\\ \Leftrightarrow\dfrac{4\left(3x+2\right)}{24}-\dfrac{6\left(3x-2\right)}{24}-\dfrac{45}{24}=0\\ \Leftrightarrow12x+24-18x+12-45=0\\ \Leftrightarrow-6x-9=0\\ \Leftrightarrow x=-\dfrac{3}{2}\)

2, ĐKXĐ:\(x\ne\pm3\)

\(\dfrac{x+2}{3+x}-\dfrac{x}{3-x}=\dfrac{8x-6}{9-x^2}\\ \Leftrightarrow\dfrac{\left(x+2\right)\left(3-x\right)}{\left(3+x\right)\left(3-x\right)}-\dfrac{x\left(3+x\right)}{\left(3+x\right)\left(3-x\right)}-\dfrac{8x-6}{\left(3+x\right)\left(3-x\right)}=0\\ \Leftrightarrow\dfrac{-x^2+x+6-3x-x^2-8x+6}{\left(3+x\right)\left(3-x\right)}=0\\ \Leftrightarrow-2x^2-10x+12=0\\ \Leftrightarrow x^2+5x-6=0\\ \Leftrightarrow\left(x-1\right)\left(x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-6\left(tm\right)\end{matrix}\right.\)

21 tháng 3 2022

\(a,\dfrac{3x+2}{6}-\dfrac{3x-2}{4}=\dfrac{15}{8}\)

\(\Leftrightarrow4\left(3x+2\right)-6\left(3x-2\right)=45\)

\(\Leftrightarrow12x+8-18x+12=45\)

\(\Leftrightarrow12x-18x=45-12-8\)

\(\Leftrightarrow-6x=25\)

\(\Leftrightarrow x=\dfrac{-25}{6}\)

Vậy \(S=\left\{\dfrac{-25}{6}\right\}\)

\(b,\dfrac{x+2}{3+x}-\dfrac{x}{3-x}=\dfrac{8x-6}{9-x^2}\left(ĐKXĐ:x\ne3;x\ne-3\right)\)

\(\Leftrightarrow\left(x+2\right)\left(3-x\right)-x\left(3+x\right)=8x-6\)

\(\Leftrightarrow3x-x^2+6-2x-3x-x^2=8x-6\)

\(\Leftrightarrow-x^2-x^2+3x-2x-3x-8x=-6+6\)

\(\Leftrightarrow-2x^2-10x=0\)

\(\Leftrightarrow-2x\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=5\left(nhận\right)\end{matrix}\right.\)

Vậy \(S=\left\{0;5\right\}\)

29 tháng 10 2020

a) ( x+ 3 ) ( x - 3 ) = 3 ( x-3)

x+ 3 =3

x =0

29 tháng 10 2020

a) x2 - 9 = 3( x - 3 )

⇔ ( x - 3 )( x + 3 ) - 3( x - 3 ) = 0

⇔ ( x - 3 )( x + 3 - 3 ) = 0

⇔ ( x - 3 ).x = 0

⇔ x - 3 = 0 hoặc x = 0

⇔ x = 3 hoặc x = 0

b) 3( 3x2 + 1 ) = 6 - 2( 3x + 2 )

⇔ 9x2 + 3 = 6 - 6x - 4

⇔ 9x2 + 6x + 3 - 6 + 4 = 0

⇔ 9x2 + 6x + 1 = 0

⇔ ( 3x + 1 )2 = 0

⇔ 3x + 1 = 0

⇔ x = -1/3

28 tháng 7 2023

\(\left(x+2\right)^2=\left(2x-1\right)^2\\ \Leftrightarrow\left(x+2\right)^2-\left(2x-1\right)^2=0\\\Leftrightarrow\left[x+2-\left(2x-1\right)\right]\left[x+2+2x-1\right]=0\\ \Leftrightarrow\left(x+2-2x+1\right)\left(x+2+2x-1\right)=0\\ \Leftrightarrow\left(-x+3\right)\left(3x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-x+3=0\\3x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-x=-3\\3x=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{3}\end{matrix}\right.\)

28 tháng 7 2023

\(\left(x+2\right)^2=\left(2x-1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=2x-1\\x+2=-\left(2x-1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2x=-1-2\\x+2=-2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=-3\\x+2x=1-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\3x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{3}\end{matrix}\right.\)