![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
+) Lỗi nhỏ: Sai ở chỗ: \(\left|x-2+4-3x\right|=\left|-2x-2\right|\)
+) Lỗi lớn: Dấu bằng xảy ra: \(\hept{\begin{cases}\left(x-2\right)\left(4-3x\right)\ge0\\\left(-2x+2\right)\left(2x-3\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{3}{2}\le x\le1\end{cases}}\Leftrightarrow\frac{3}{2}\le x\le1\)( làm tắt )
Nhưng mà thử vào chọn x= 1=> A = 3 > 1. Nên bài này sai.
Làm lại nhé!
A = | x - 2 | + | 2 x - 3 | + | 3 x - 4 |
= | x - 2 | + | 2 x - 3 | + 3 | x - 4/3 |
= | x -2 | + | x - 4/3 | + | 2x -3 | +2 | x - 4/3 |
= ( | 2 - x | + | x - 4/3 | ) + ( | 3 - 2x | + | 2x - 8/3 | )
\(\ge\)| 2 -x + x - 4/3 | + | 3 - 2x + 2x -8/3 |
= 2/3 + 1/3 = 1
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(2-x\right)\left(x-\frac{4}{3}\right)\ge0\\\left(3-2x\right)\left(2x-\frac{8}{3}\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{4}{3}\le x\le\frac{3}{2}\end{cases}}\Leftrightarrow\frac{4}{3}\le x\le\frac{3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(x^2+1\right)\left(2x+1\right)\left(2x-1\right)>0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)>0\)
\(\Leftrightarrow\begin{cases}2x-1>0\\2x+1>0\end{cases}\) hoặc \(\begin{cases}2x-1< 0\\2x+1< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{1}{2}\\x>-\frac{1}{2}\end{cases}\) hoặc \(\begin{cases}x< \frac{1}{2}\\x< -\frac{1}{2}\end{cases}\)
\(\Leftrightarrow x>\frac{1}{2}\) hoặc \(x< -\frac{1}{2}\)
b) \(\left(x+1\right)\left(x-3\right)>0\)
\(\Leftrightarrow\begin{cases}x+1>0\\x-3>0\end{cases}\) hoặc \(\begin{cases}x+1< 0\\x-3< 0\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x>3\\x< -1\end{array}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\left(x-3\right)\left(2x-1\right)>0.\)
\(Th1:x-3>0;2x-1>0\)
\(x-3>0\Rightarrow x>3_{\left(1\right)}\)
\(2x-1>0\Rightarrow2x>1\Rightarrow x>\frac{1}{2}_{\left(2\right)}\)
\(\left(1\right),\left(2\right)\Rightarrow x>3`\)
\(Th2:x-3< 0;2x-1< 0\)
\(x-3< 0\Rightarrow x< 3_{\left(1\right)}\)
\(2x-1< 0\Rightarrow2x< 1\Rightarrow x< \frac{1}{2}_{\left(2\right)}\)
\(\left(1\right),\left(2\right)\Rightarrow x< \frac{1}{2}\)
b) \(\left(2-3x\right)\left(-5x+1\right)< 0\)
\(Th1:2-3x>0;-5x+1< 0\)
\(2-3x>0\Rightarrow3x>2\Rightarrow x>\frac{2}{3}_{\left(1\right)}\)
\(-5x+1< 0\Rightarrow-5x< -1\Rightarrow x< \frac{1}{5}_{\left(2\right)}\)
\(_{\left(1\right),\left(2\right)\Rightarrow}\)không xảy ra trường hợp này
\(Th2:2-3x< 0;-5x+1>0\)
\(2-3x< 0\Rightarrow3x< 2\Rightarrow x< \frac{2}{3}_{\left(1\right)}\)
\(-5x+1>0\Rightarrow-5x>-1\Rightarrow x>\frac{1}{5}_{\left(2\right)}\)
\(\left(1\right),\left(2\right)\Rightarrow\frac{1}{5}< x< \frac{2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: (2x-3)(3x+6)>0
=>(2x-3)(x+2)>0
=>x<-2 hoặc x>3/2
b: (3x+4)(2x-6)<0
=>(3x+4)(x-3)<0
=>-4/3<x<3
c: (3x+5)(2x+4)>4
\(\Leftrightarrow6x^2+12x+10x+20-4>0\)
\(\Leftrightarrow6x^2+22x+16>0\)
=>\(6x^2+6x+16x+16>0\)
=>(x+1)(3x+8)>0
=>x>-1 hoặc x<-8/3
f: (4x-8)(2x+5)<0
=>(x-2)(2x+5)<0
=>-5/2<x<2
h: (3x-7)(x+1)<=0
=>x+1>=0 và 3x-7<=0
=>-1<=x<=7/3
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\left(x-3\right)\left(x-2\right)< 0\)
Vì \(x\in R\) nên \(x-3< x-2\) nên:
\(\left\{{}\begin{matrix}x-3< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 3\\x>2\end{matrix}\right.\Rightarrow2< x< 3\)
Vậy....................
b, Giống câu a.
c, \(\left(x+3\right)\left(x-4\right)>0\)
\(\left\{{}\begin{matrix}\left\{{}\begin{matrix}x+3>0\\x-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x>-3\\x>4\end{matrix}\right.\\\left\{{}\begin{matrix}x< -3\\x< 4\end{matrix}\right.\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>4\\x< -3\end{matrix}\right.\)
Vậy.............
d, Giống câu c
e, Dạng giống câu a
Chúc bạn học tốt!!!
a)\(\left(x-3\right)\left(x-2\right)< 0\)
Vì \(\left(x-3\right)\left(x-2\right)< 0\) nên phải có 1 số âm và 1 số dương
Mà \(x-3< x-2\)
Nên ta có:
\(x-3< 0\)=>\(x< 3\)
\(x-2>0\)=>\(x>2\)
Do đó:\(2< x< 3\)
Vậy \(2< x< 3\)
Các câu sau tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
a: (x-2)(x+3/4)>0
=>x-2>0 hoặc x+3/4<0
=>x>2 hoặc x<-3/4
b: (2x-5)(1-3x)>0
=>(2x-5)(3x-1)<0
=>3x-1>0 và 2x-5<0
=>1/3<x<5/2
c: (3-2x)(x+1)<0
=>(2x-3)(x+1)>0
=>2x-3>0 hoặc x+1<0
=>x>3/2 hoặc x<-1
d: (5x+11)(7-x)<0
=>(5x+11)(x-7)>0
=>x>7 hoặc x<-11/5
\(\left(x-\frac{3}{2}\right)\left(2x+1\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{2}>0\\2x+1>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>\frac{3}{2}\\x>-\frac{1}{2}\end{cases}}\Leftrightarrow x>\frac{3}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{2}< 0\\2x+1< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< \frac{3}{2}\\x< -\frac{1}{2}\end{cases}}\Leftrightarrow x< -\frac{1}{2}\)
C1: Ta có: \(\left(x-\frac{3}{2}\right).\left(2x+1\right)>0\)
+ \(\hept{\begin{cases}x-\frac{3}{2}>0\\2x+1>0\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x>\frac{3}{2}\\x>-\frac{1}{2}\end{cases}}\)\(\Rightarrow\)\(x>\frac{3}{2}\)
+ \(\hept{\begin{cases}x-\frac{3}{2}< 0\\2x+1< 0\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x< \frac{3}{2}\\x< -\frac{1}{2}\end{cases}}\)\(\Rightarrow\)\(x< -\frac{1}{2}\)
Vậy \(x>\frac{3}{2}\)hoặc \(x< -\frac{1}{2}\)
C2: Ta có bảng xét dấu:
x -1/2 3/2 2x+1 x-3/2 - - - + + + Tích + - +
Vì \(\left(x-\frac{3}{2}\right).\left(2x+1\right)>0\)\(\Rightarrow\)\(x>\frac{3}{2}\)hoặc \(x< -\frac{1}{2}\)
Vậy \(x>\frac{3}{2}\)hoặc \(x< -\frac{1}{2}\)
Chúc bạn học tốt