Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\Leftrightarrow-4x^2+3x-4x^2+8x=10\)
=>-8x^2+11x-10=0
=>\(x\in\varnothing\)
2: \(\Leftrightarrow5x^2-15x+5+x-5x^2=x-2\)
=>-14x+5=x-2
=>-15x=-7
=>x=7/15
3: \(\Leftrightarrow12x^2-12x^2+20x=10x-17\)
=>10x=-17
=>x=-17/10
4: \(\Leftrightarrow4x^2-2x+3-4x^2+20x=7x-3\)
=>18x+3=7x-3
=>11x=-6
=>x=-6/11
5: \(\Leftrightarrow-3x+15+5x-5+3x^2=4-x\)
\(\Leftrightarrow3x^2+2x+10-4+x=0\)
=>3x^2+3x+6=0
hay \(x\in\varnothing\)
a) Đặt x^2+2x+2=t
\(\frac{4}{t-1}+\frac{3}{t+1}=\frac{3}{2}\Leftrightarrow\frac{4t+4+3t-3}{t^2-1}=\frac{7t+1}{t^2-1}=\frac{3}{2}\)
\(\Leftrightarrow14t+2=3t^2-3\Leftrightarrow3t^2-14t-5=3t\left(t-5\right)+t-5=0\)\(\Leftrightarrow\left(t-5\right)\left(3t+1\right)=0\Rightarrow\left[\begin{matrix}t=5\\t=-\frac{1}{3}\left(loai\right)\end{matrix}\right.\)
Với t=5 ta có (x+1)^2=4\(\Rightarrow\left[\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
a) 4x2 - 2x + 3 - 4x.(x - 5) = 7x - 3
--> 4x2 - 2x + 3 - 4x2 + 20x = 7x - 3
--> 4x2 - 2x - 4x2 + 20x - 7x = -3 - 3
--> 11x = -6
--> x = \(\frac{-6}{11}\)
b) -3x.(x - 5) + 5.(x - 1) + 3x2 = 4x
--> -3x2 + 15x + 5x - 5 + 3x2 = 4x
--> -3x2 + 15x + 5x + 3x2 - 4x = 5
--> 16x = 5
--> x = \(\frac{5}{16}\)
c) 7x.(x - 2) - 5.(x - 1) = 21x2 - 14x2 + 3
--> 7x2 - 14x - 5x + 5 = 7x2 + 3
--> 7x2 - 14x - 5x - 7x2 = -5 + 3
--> -19x = -2
--> x = \(\frac{2}{19}\)
d) 3.(5x - 1) - x.(x - 2) + x2 - 13x = 7
--> 15x - 3 - x2 + 2x + x2 - 13x = 7
--> 15x - x2 + 2x + x2 - 13x = 3 + 7
--> 4x = 10
--> x = \(\frac{5}{2}\)
e) \(\frac{1}{5}\)x.(10x - 15) - 2x.(x - 5) = 12
--> 2x2 - 3x - 2x2 + 10x = 12
--> 7x = 12
--> x = \(\frac{12}{7}\)
~ Học tốt ~
a) 4x2 - 2x + 3 - 4x(x - 5) = 7x - 3
=> 4x2 - 2x + 3 - 4x2 + 20x = 7x - 3
=> 18x + 3 = 7x - 3
=> 18x - 7x = -3 - 3
=> 11x = -6
=> x = -6/11
b) -3x(x - 5) + 5(x - 1) + 3x2 = 4x
=> -3x2 + 15x + 5x - 5 + 3x2 = 4x
=> 20x - 5 = 4x
=> 20x - 4x = 5
=> 16x = 5
=> x = 5/16
\(c,7x\left(x-2\right)-5\left(x-1\right)=21x^2-14x^2+3\)
\(\Leftrightarrow7x^2-14x-5x+5=7x^2+3\)
\(\Leftrightarrow7x^2-7x^2-19x=3-5\)
\(\Leftrightarrow-19x=-2\)
\(\Leftrightarrow x=\frac{2}{19}\)
1) Ta có: \(\left(x+5\right)\left(x+2\right)-3\left(4x-3\right)=\left(5-x\right)^2\)
\(\Leftrightarrow x^2+2x+5x+10-12x+9=25-10x+x^2\)
\(\Leftrightarrow x^2-5x+19-25+10x-x^2=0\)
\(\Leftrightarrow5x-6=0\)
\(\Leftrightarrow5x=6\)
\(\Leftrightarrow x=\frac{6}{5}\)
Vậy: \(x=\frac{6}{5}\)
2) Ta có: \(\left(x+2\right)^3-\left(x-2\right)^3=12x\left(x-1\right)-8\)
\(\Leftrightarrow x^3+6x^2+12x+8-\left(x^3-6x^2+12x-8\right)=12x^2-12x-8\)
\(\Leftrightarrow x^3+6x^2+12x+8-x^3+6x^2-12x+8-12x^2+12x+8=0\)
\(\Leftrightarrow12x+24=0\)
\(\Leftrightarrow12x=-24\)
\(\Leftrightarrow x=-2\)
Vậy: x=-2
3) Ta có: \(3x\left(12x-4\right)-9x\left(4x-3\right)=30\)
\(\Leftrightarrow36x^2-12x-36x^2+27x-30=0\)
\(\Leftrightarrow15x-30=0\)
\(\Leftrightarrow15x=30\)
\(\Leftrightarrow x=2\)
Vậy: x=2
4) Ta có: \(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)
\(\Leftrightarrow48x^2-12x-20x+5+3x-48x^2-7+112x-81=0\)
\(\Leftrightarrow83x-83=0\)
\(\Leftrightarrow83x=83\)
\(\Leftrightarrow x=1\)
Vậy: x=1
4x ( x - 5 ) - ( x - 1 ) ( 4x - 3 ) = 5
<=> 4x2 - 20x - ( 4x2 - 7x + 3 ) = 5
<=> 4x2 - 20x - 4x2 + 7x - 3 = 5
<=> - 13x = 8
<=> x = - 8/13
A. \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2+3x+2x+6\right)-\left(x^2+5x-2x-10\right)=0\)
\(\Leftrightarrow x^2+3x+2x+6-x^2-5x+2x+10=0\)
\(\Leftrightarrow x^2+3x+2x-x^2-5x+2x=-6-10\)
\(\Leftrightarrow2x=-16\)
\(\Leftrightarrow x=-8\) .Vậy \(S=\left\{-8\right\}\)
B. \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x+5\right)\left(x-4\right)\)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x+5x-20\)
\(\Leftrightarrow2x^2-8x+3x+x^2-2x-5x-3x^2+12x-5x=12-10-20\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\) . Vậy \(S=\left\{\dfrac{18}{5}\right\}\)
C. \(\left(8-4x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow8x+16-4x^2-8x+4\left(x^2+x-2x-2\right)=0\)
\(\Leftrightarrow8x+16-4x^2-8x+4x^2+4x-8x-8=0\)
\(\Leftrightarrow8x-4x^2-8x+4x^2+4x-8x=-16+8\)
\(\Leftrightarrow-4x=-8\)
\(\Leftrightarrow x=2\) . Vậy \(S=\left\{2\right\}\)
D. \(\left(2x-3\right)\left(8x+2\right)=\left(4x+1\right)\left(4x-1\right)-3\)
\(\Leftrightarrow16x^2+4x-24x-6=16x^2+1^2-3\)
\(\Leftrightarrow16x^2+4x-24x-16x^2=6+1-3\)
\(\Leftrightarrow-20x=4\)
\(\Leftrightarrow x=-\dfrac{1}{5}\) . Vậy \(S=\left\{-\dfrac{1}{5}\right\}\)
a)(x+2)(x+3)-(x-2)(x+5)=0
\(\Leftrightarrow x^2+3x+2x+6-x^2-5x+2x+10=0\)
<=>2x=-16
<=>x=-8
b)(2x+3)(x-4)+(x-5)(x-2)=(3x-5)(x-4)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20\)
\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)
\(\Leftrightarrow5x=22\Leftrightarrow x=\dfrac{22}{5}\)
c)(8-4x)(x+2)+4(x-2)(x+1)=0
\(\Leftrightarrow8x+16-4x^2-8x+4x^2+4x-8x-8=0\)
\(\Leftrightarrow-4x=-8\Leftrightarrow x=2\)
d)(2x-3)(8x+2)=(4x+1)(4x-1)-3
\(\Leftrightarrow16x^2+4x-24x-6=16x^2-4x+4x-1-3\)
\(\Leftrightarrow-20x=-2\Leftrightarrow x=\dfrac{-1}{10}\)
|x + 3| + 4x = 5
=> |x + 3| = 5 - 4x (1)
ĐKXĐ : \(5-4x\ge0\Rightarrow4x\le5\Rightarrow x\le1,25\)
Khi đó (1) <=> \(\orbr{\begin{cases}x+3=5-4x\\x+3=-5+4x\end{cases}}\Rightarrow\orbr{\begin{cases}5x=2\\3x=8\end{cases}\Rightarrow\orbr{\begin{cases}x=0,4\left(tm\right)\\x=\frac{8}{3}\left(\text{loại}\right)\end{cases}}}\)
Vậy x = 0,4
\(\left|x+3\right|+4x=5\Leftrightarrow\left|x+3\right|=5-4x\)
\(\Leftrightarrow\hept{\begin{cases}x+3=5-4x\\-x-3=5-4x\end{cases}\Leftrightarrow\hept{\begin{cases}5x=2\\3x=8\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2}{5}\\x=\frac{8}{3}\end{cases}}}\)