Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p) \(\left(9-x\right)\left(x^2+2x-3\right)\)
\(=9\left(x^2+2x-3\right)-x\left(x^2+2x-3\right)\)
\(=9x^2+18x-27-x^3-2x^2+3x\)
\(=-x^3+7x^2+21x-27\)
n) \(\left(-x+3\right)\left(x^2+x+1\right)\)
\(=-x\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)
\(=-x^3-x^2-x+3x^2+3x+3\)
\(=-x^2+2x^2+2x+3\)
o) \(\left(-6x+\dfrac{1}{2}\right)\left(x^2-4x+2\right)\)
\(=-6x\left(x^2-4x+2\right)+\dfrac{1}{2}\left(x^2-4x+2\right)\)
\(=-6x^3+24x^2-12x+\dfrac{1}{2}x^2-2x+1\)
\(=-6x^3+\dfrac{49}{2}x^2-14x+1\)
q) \(\left(6x+1\right)\left(x^2-2x-3\right)\)
\(=6x\left(x^2-2x-3\right)+\left(x^2-2x-3\right)\)
\(=6x^3-12x^2-18x+x^2-2x-3\)
\(=6x^3-11x^2-20x-3\)
r) \(\left(2x+1\right)\left(-x^2-3x+1\right)\)
\(=2x\left(-x^2-3x+1\right)+\left(-x^2-3x+1\right)\)
\(=-2x^3-6x^2+2x-x^2-3x+1\)
\(=-2x^3-7x^2-x+1\)
u) \(\left(2x-3\right)\left(-x^2+x+6\right)\)
\(=2x\left(-x^2+x+6\right)-3\left(-x^2+x+6\right)\)
\(=-2x^3+2x^2+12x+3x^2-3x-18\)
\(=-2x^3+5x^2+9x-18\)
s) \(\left(-4x+5\right)\left(x^2+3x-2\right)\)
\(=-4x\left(x^2+3x-2\right)+5\left(x^2+3x-2\right)\)
\(=-4x^3-12x^2+8x+5x^2+15x-10\)
\(=-4x^3-7x^2+23x-10\)
v) \(\left(-\dfrac{1}{2}x+3\right)\left(2x+6-4x^3\right)\)
\(=-\dfrac{1}{2}x\left(2x+6-4x^3\right)+3\left(2x+6-4x^3\right)\)
\(=-x^2-3+2x^4+6x+18-12x^3\)
\(=2x^4-12x^3-x^2+6x+15\)
p: (-x+9)(x^2+2x-3)
=-x^3-2x^2+3x+9x^2+18x-27
=-x^3+7x^2+21x-27
n: (-x+3)(x^2+x+1)
=-x^3-x^2-x+3x^2+3x+3
=-x^3+2x^2+2x+3
o: (-6x+1/2)(x^2-4x+2)
=-6x^3+24x^2-12x+1/2x^2-2x+1
=-64x^3+49/2x^2-14x+1
q: (6x+1)(x^2-2x-3)
=6x^3-12x^2-18x+x^2-2x-3
=6x^3-11x^2-20x-3
r: (2x+1)(-x^2-3x+1)
=-2x^3-6x^2+2x-x^2-3x+1
=-2x^3-7x^2-x+1
u: =-2x^3+2x^2+12x+3x^2-3x-18
=-2x^3+5x^2+9x-18
s: =-4x^3-12x^2+8x+5x^2+15x-10
=-4x^3-7x^2+23x-10
v) \(\left(-\dfrac{1}{2}x+3\right)\left(2x+6-4c^3\right)\)
\(=-\dfrac{1}{2}\left(2x+6-4c^3\right)+3\left(2x+6-4c^3\right)\)
\(=-x^2-3x+2c^3x+6x+18-12c^3\)
\(=-x^2+3x+2c^3x+18-12c^3\)
f) \(\left(2x-5\right)\left(x^2-x+3\right)\)
\(=2x\left(x^2-x+3\right)-5\left(x^2-x+3\right)\)
\(=2x^3-2x^2+6x-5x^2+5x-15\)
\(=2x^3-7x^2+11x-15\)
w) \(\left(3x+1\right)\left(x^2-2x-5\right)\)
\(=3x\left(x^2-2x-5\right)+\left(x^2-2x-5\right)\)
\(=3x^3-6x^2-15x+x^2-2x-5\)
\(=3x^3-5x^2-17x-5\)
x) \(\left(6x-3\right)\left(x^2+x-1\right)\)
\(=6x\left(x^2+x-1\right)-3\left(x^2+x-1\right)\)
\(=6x^3+6x^2-6x-3x^2-3x+3\)
\(=6x^3+3x^2-9x+3\)
y) \(\left(5x-2\right)\left(3x+1-x^2\right)\)
\(=5x\left(3x+1-x^2\right)-2\left(3x+1-x^2\right)\)
\(=15x^2+5x-5x^3-6x-2+2x^2\)
\(=-5x^3+17x^2-x-2\)
z) \(\left(\dfrac{3}{4}x+1\right)\left(4x^2+4x+4\right)\)
\(=\dfrac{3}{4}x\left(4x^2+4x+4\right)+\left(4x^2+4x+4\right)\)
\(=3x^3+3x^2+3x+4x^2+4x+4\)
\(=3x^3+7x^2+7x+4\)
f: =2x^3-2x^2+6x-5x^2+5x-15
=2x^3-7x^2+11x-15
w: =3x^3-6x^2-15x+x^2-2x-5
=3x^3-5x^2-17x-5
x: =6x^3+6x^2-6x-3x^2-3x+3
=6x^3+3x^2-9x+3
y: =(5x-2)(-x^2+3x+1)
=-5x^3+15x^2+5x+2x^2-6x-2
=-5x^3+17x^2-x-2
z: =3x^3+3x^2+3x+4x^2+4x+4
=3x^3+7x^2+7x+4
\(a,\Leftrightarrow\left(3x-7\right)\left(3x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{7}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-1-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\\ c,\Leftrightarrow4x^2-7x-2-4x^2+4x+3=7\\ \Leftrightarrow-3x=6\Leftrightarrow x=-2\\ d,\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=0\\ \Leftrightarrow4x=-26\Leftrightarrow x=-\dfrac{13}{2}\\ e,\Leftrightarrow x^3+27-x^3+x-27=0\\ \Leftrightarrow x=0\\ f,\Leftrightarrow\left(4x-3\right)\left(4x-3+3x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)
a) 9x2-49=0
(3x)2-72=0
<=> (3x-7)(3x+7)=0
th1: 3x-7=0
<=>3x=7
<=>x=\(\dfrac{7}{3}\)
th2: 3x+7=0
<=>3x=-7
<=>x=\(-\dfrac{7}{3}\)
d: \(\dfrac{x^4-2x^3+2x-1}{x^2-1}\)
\(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\)
\(=x^2-2x+1\)
\(=\left(x-1\right)^2\)
\(a,\dfrac{x^2+2}{x^3+1}-\dfrac{1}{x+1}\left(ĐKXĐ:x\ne-1\right)\\ =\dfrac{x^2+2-\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x^2-x+1}\\ c,\dfrac{1}{2-2x}-\dfrac{3}{2+2x}+\dfrac{2x}{x^2-1}\\ =\dfrac{-1}{2\left(x-1\right)}-\dfrac{3}{2\left(x+1\right)}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\left(ĐKXĐ:x\ne\pm1\right)\\ =\dfrac{-1\left(x+1\right)-3\left(x-1\right)+2x.2}{2\left(x+1\right)\left(x-1\right)}\\ =\dfrac{-x-1-3x+3+4x}{2\left(x+1\right)\left(x-1\right)}=\dfrac{2}{2\left(x+1\right)\left(x-1\right)}=\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)
\(\left(x-2\right)\left(2x-1\right)-3\left(x+1\right)^2-4x\left(x+2\right)\)
\(=2x^2-x-4x+2-3\left(x^2+2x+1\right)-4x^2-8x\)
\(=2x^2-5x+2-3x^2-6x-3-4x^2-8x\)
\(=-5x^2-19x-1\)