Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vd câu 1:
ta có x-y=4 =>x=4+y
ta có pt:
4+y/y-2=3/2
=>8+2y=3y-6
=>-y=-14
=>y=14
=>x=4+y=4+14=18
các bài khác cũng tương tự thôi bạn
x . \(\frac{1}{2}\)- x.\(\frac{2}{3}\) + x.\(\frac{3}{4}\)- x. \(\frac{5}{6}\) = \(\frac{5}{6}\) -\(\frac{3}{4}\) + \(\frac{2}{3}\) -\(\frac{1}{2}\)
x . \(\frac{1}{2}\)- x.\(\frac{2}{3}\) + x.\(\frac{3}{4}\)- x. \(\frac{5}{6}\) = \(\frac{10}{12}\)-\(\frac{9}{12}\)+\(\frac{8}{12}\)-\(\frac{6}{12}\)
=>x.(1/2-2/3+3/4)=1/4
=>x.7/12=1/4
=>x=1/4:7/12
=>x=1/4.12/7
=>x=3/7
√(2x²+8x+6) + √(x²-1) = 2(x+1) TXĐ: x € (-∞;-3] U [1;+∞) U {-1}
Từ pt => x≥ -1. Kết hợp với TXĐ đc: x ≥1 hoặc x = -1
Bình phương 2 vế:
2√[2(x²-1)(x²+4x+3)] = x²-1
Từ đây suy ra x² ≥ 1, lại bình phương 2 vế tiếp:
8(x²-1)(x²+4x+3) = x^4 - 2x²+1
<=> 7x^4 + 32x³ + 18x² -32x -25 = 0
<=> 7x^4 - 7x² + 32x³ - 32x +25x² - 25 = 0
<=> 7x²(x²-1) + 32x(x²-1) +25(x²-1) = 0
<=> (x²-1)(7x²+32x+25) = 0
<=> (x²-1)(x+1)(7x+25) = 0
<=> x = ±1 (x = -25/7 loại)
hình như bạn hiểu sai đề rồi. viết lại cho rõ nhé:(8x-6)căn (x-1)=(2+căn (x-2))(x+4 căn(x-2)+3)
đk: \(\begin{cases}x+2\ne0\\4-x>0\\6+x>0\end{cases}\)
ta có \(3\log_{\frac{1}{4}}\left(x+2\right)-3=3\log_{\frac{1}{4}}\left(4-x\right)+3\log_{\frac{1}{4}}\left(6+x\right)\) suy ra \(\log_{\frac{1}{4}}\left(x+2\right)-\log_{\frac{1}{4}}\frac{1}{4}=\log_{\frac{1}{4}}\left(4-x\right)\left(6+x\right)\) suy ra \(\log_{\frac{1}{4}}\left(x+2\right).\frac{1}{4}=\log_{\frac{1}{4}}\left(4-x\right)\left(6+x\right)\) suy ra \(\frac{x+2}{4}=\left(4-x\right)\left(6+x\right)\)
giải pt tìm ra x
đối chiếu với đk của bài ta suy ra đc nghiệm của pt
mọi người giúp mình với huhu... lm giúp mình theo cách lớp 7 nhé T.T hoặc nói hướng làm thôi cũng đc =))))
a,(x+6)^4-(x+6)^6=0
<=>(x+6)^4-(x+6)^4.(x+6)^2=0
<=>(x+6)^4.[1-(x+6)^2]=0
TH1:(x+6)^4=0=>x+6=0=>x=-6
TH2:1-(x+6)^2=0=>(x+6)^2=1=>x+6=1 hoặc x+6=-1
=>x=-5 hoặc x=-7
Vậy x E {-7;-6;-5}
Tick nhé
a) ĐK: \(x\ge0,x\ne1,x\ne\frac{1}{4}\)
\(A=1+\left(\frac{2x+\sqrt{x}-1}{1-x}-\frac{2x\sqrt{x}-\sqrt{x}+x}{1-x\sqrt{x}}\right)\frac{x-\sqrt{x}}{2\sqrt{x}-1}\)
\(A=1+\left[\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}\right]\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)
\(A=1+\left[\frac{2\sqrt{x}-1}{1-\sqrt{x}}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}\right]\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)
\(A=1-\sqrt{x}+\frac{x\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)
\(A=\frac{x+1}{x+\sqrt{x}+1}\)
Để \(A=\frac{6-\sqrt{6}}{5}\Rightarrow\frac{x+1}{x+\sqrt{x}+1}=\frac{6-\sqrt{6}}{5}\)
\(\Rightarrow5x+5=\left(6-\sqrt{6}\right)x+\left(6-\sqrt{6}\right)\sqrt{x}+6-\sqrt{6}\)
\(\Rightarrow\left(1-\sqrt{6}\right)x+\left(6-\sqrt{6}\right)\sqrt{x}+1-\sqrt{6}=0\)
\(\Rightarrow x-\sqrt{6}.\sqrt{x}+1=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{\sqrt{2}+\sqrt{6}}{2}\\\sqrt{x}=\frac{-\sqrt{2}+\sqrt{6}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{cases}}\left(tmđk\right)\)
b) Xét \(A-\frac{2}{3}=\frac{x+1}{x+\sqrt{x}+1}-\frac{2}{3}=\frac{3x+3-2x-2\sqrt{x}-2}{3\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x-2\sqrt{x}+1}{3\left(x+\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}\)
Do \(x\ge0,x\ne1,x\ne\frac{1}{4}\Rightarrow\left(\sqrt{x}-1\right)^2>0\)
Lại có \(x+\sqrt{x}+1=\left(\sqrt{x}+\frac{1}{2}\right)+\frac{3}{4}>0\)
Nên \(A-\frac{2}{3}>0\Rightarrow A>\frac{2}{3}\).
đây không phải toán mẫu giáo em nhé!
Đây mà là Toán mẫu giáo á(T-T)!!?Toán cấp 2 thì có ấy!!!