Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ mà,e cứ chia 2 TH là đc
Vd:<0 thì chia ra x+2>0 hoac x<0 và nguoc lai roi tìm x
\(\left(x^2-5\right)\left(x^2+1\right)=0\)
<=> \(\hept{\begin{cases}x^2-5=0\\x^2+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x^2=5\\x^2=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x=\sqrt{5};x=-\sqrt{5}\\x\in\varnothing\end{cases}}\)
câu còn lại tương tự nha
1) Do x ∈ Z và 0 < x < 3
⇒ x ∈ {1; 2}
2) Do x ∈ Z và 0 < x ≤ 3
⇒ x ∈ {1; 2; 3}
3) Do x ∈ Z và -1 < x ≤ 4
⇒ x ∈ {0; 1; 2; 3; 4}
a: =>3x-6-5=2x+6
=>3x-11=2x+6
hay x=17
b: (x+5)(x2-4)=0
=>(x+5)(x+2)(x-2)=0
hay \(x\in\left\{-5;-2;2\right\}\)
c: \(\left(x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
hay \(x\in\left\{-1;2;-2\right\}\)
d: \(\left(4-x\right)\left(x+1\right)\ge0\)
=>(x-4)(x+1)<=0
hay -1<=x<=4
1) (x-1)(x+5)(-3x+8)=0
\(\hept{\begin{cases}\\\\\end{cases}}\)
1) (x-1)(x+5)(-3+8)=0
= (x-1)(x+5).5 =0
\(\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0+1=1\\x=0-5=-5\end{cases}}\)
\(\Rightarrow x\in\left\{1;-5\right\}\)
2) (x-1)(x-2)(x-3)=0
\(\hept{\begin{cases}x-1=0\\x-2=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0+1=1\\x=0+2=2\\x=0+3=3\end{cases}}\)
\(\Rightarrow x\in\left\{1;2;3\right\}\)
3)(5x+3)(x2+4)(x-1)=0
\(\hept{\begin{cases}5x+3=0\\x^2+4=0\\x-1=0\end{cases}}\Rightarrow\hept{\begin{cases}5x=0-3=-3\\x^2=0-4=-4\\x=0+1=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-3:5\Rightarrow x\in\varnothing\\x\in\varnothing\\x=1\end{cases}}\)
\(\Rightarrow x=1\)
4)x(x2-1)=0
\(\orbr{\begin{cases}x=0\\x^2-1=0\Rightarrow x^2=0+1=1\Rightarrow x^2=1^2;(-1)^2\Rightarrow x\in\left\{1;-1\right\}\end{cases}}\)
\(\Rightarrow x\in\left\{-1;0;1\right\}\)
Xin lỗi về phần bên trên nha! tại tui ấn nhầm nút.Sorry.
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
xyOtACK
a, Xét t/g OAC và t/g OAK có:
góc OCA = góc OKA = 90 độ (gt)
góc AOC = góc AOK (gt)
OA chung
=> t/g OAC = t/g OAK (cạnh huyền, góc nhọn)
=> OC = OK (2 cạnh t/ứ)
b, Vì OC = OK (cmt) => t/g OKC cân tại O
Li_ke đi đồ chó
a). ( x-3)(x²-4)=0
<=> x-3=0=>x=3
<=>(x-2)(x+2)=0. =>x=\(\pm2\)
b). (x²+4)(13-x)=0
<=> ((x+2)(x+2)=0. =>x=-2
<=> 13-x=0. =>x=13
c)2x+1-12=7
<=>2x=7+12-1=18
=>x=18:2=9
d). -16+3+2x=0
<=>2x=16-3=13
=>x=\(\frac{13}{2}\)
e). x-x=0
<=>0x=0
F). x+x=0
<=> 2x=0
<=> x=0
`(x-2)(x+4)=0`
`@TH1:x-2=0=>x=2`
`@TH2:x+4=0=>x=-4`
Vậy `x=`{`2;-4`}
`(x-2)(x+4)=0`
`=>` \(\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\)
`=>` \(\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Vậy `x=2; x=-4`