Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(A=1+2+2^2+...+2^{100}\)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(A=2^{101}-1\)
\(B=1+3^2+3^4+...+3^{100}\)
\(3^2B=3^2+3^4+3^6+...+3^{102}\)
\(3^2B-B=\left(3^2+3^4+3^6+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
\(8B=3^{102}-1\)
\(B=\frac{3^{102}-1}{8}\)
\(C=1+5^3+5^6+...+5^{99}\)
\(5^2C=5^3+5^6+5^9+...+5^{102}\)
\(5^2C-C=\left(5^3+5^6+5^9...+5^{102}\right)-\left(1+5^3+5^6+...+5^{99}\right)\)
\(24C=5^{102}-1\)
\(C=\frac{5^{102}-1}{24}\)
a) A = 1 + 22 + ... + 2100
=> 2A = 22 + 23 + ... + 2101
Lấy 2A - A = (2 + 22 + ... + 2101) - (1 + 22 + ... 2100)
A = 2101 - 1
b) B = 1 + 32 + 34 + ... + 3100
=> 32B = 32 + 34 + 36 + ..... + 3102
=> 9B = 32 + 34 + 36 + ..... + 3102
Lấy 9B - B = ( 32 + 34 + 36 + ..... + 3102) - (1 + 32 + 34 + ... + 3100)
8B = 3102 - 1
B = \(\frac{3^{102}-1}{8}\)
c) C = 1 + 53 + 56 + ... + 599
=> 53.C = 53 . 56 . 59 + ... + 5102
=> 125.C = 53 . 56 . 59 + ... + 5102
Lấy 125.C - C = (53 . 56 . 59 + ... + 5102) - (1 + 53 + 56 + ... + 599)
124.C = 5102 - 1
=> C = \(\frac{5^{102}-1}{124}\)
1+2-3-4+5+6-7-8+..........+97+98-99-100
=(1+2-3-4)+(5+6-7-8)+.........+(97+98-99-100)
=(-4)+(-4)+.....+(-4) (25 số -4)
=(-4)x25
=-100
<=> x-3 va 8-x trai dau
sau do xet th1: x-3>0 va 8-x<0
th2: x-3<0 va 8-x >0
c)(x-4).(2x+6)=0
=>(x-4)=0 hoặc (2x+6)=0
với x-4 = 0
x =0+4
x =4
với 2x+6=0
2x =0-6
2x =-6
x =-6:2
x =-3
a) (2x-6)3 = (2x-6)2018
=> (2x-6)3 - (2x-6)2018 = 0
(2x-6)3.[1-(2x-6)2015 ] = 0
=> (2x-6)3 = 0 =>...
1 - (2x-6)2015 = 0 => (2x-6)2015 = 1 => ...
b) (2x-1)3 = 27 = 33
=> 2x - 1 = 3
=> ...
c) (x + 1) + (x+2) + (x+3) + ...+ (x+100) = 5750
x.100 + (1+2+3+...+100) = 5750
x.100 + [(1+100).100:2] = 5750
x.100 + 5050 = 5750
x.100 = 700
x = 7