\(x = 1+9/45+9/105+9/189+...+9/29997\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2019

#)Giải :

\(P=1+\frac{9}{45}+\frac{9}{105}+\frac{9}{189}+...+\frac{9}{29997}\)

\(P=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\)

\(P=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101} \right)\)

\(P=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(P=\frac{3}{2}\left(1-\frac{1}{101}\right)\)

\(P=\frac{3}{2}\times\frac{100}{101}\)

\(P=\frac{150}{101}\)

trả lời 

=150/101 

chúc bn 

hc tốt

4 tháng 5 2019

S = 1/9 + 1/45 + 1/105 + 1/189 + 1/297

=> S = 1/2 ( 6/27 + 6/135 + 6/315 + 6/567 + 6/891 )

=> S = 1/2 ( 6/3.9 + 6/9.15 + 6/15.21 + 6/21.27 + 6/27.33 )

=> S = 1/2 ( 1/3 - 1/9 + 1/9 - 1/15 + ... + 1/27 - 1/33 )

=> S = 1/2 ( 1/3 - 1/33 )

=> S = 1/2 . 10/33

=> S = 5/33

4 tháng 5 2019

\(S=\frac{1}{9}+\frac{1}{45}+\frac{1}{105}+\frac{1}{189}+\frac{1}{297}\)

\(S=\frac{1}{1.9}+\frac{1}{9.5}+\frac{1}{5.21}+\frac{1}{21.9}+\frac{1}{9.33}\)

\(5S=\frac{5}{1.9}+\frac{5}{9.5}+\frac{5}{5.21}+\frac{5}{21.9}+\frac{5}{9.33}\)

\(5S=1-\frac{1}{9}+\frac{1}{9}-\frac{1}{5}+\frac{1}{5}+\frac{1}{21}+\frac{1}{21}-\frac{1}{9}+\frac{1}{9}-\frac{1}{33}\)

\(5S=1-\frac{1}{33}\)

\(5S=\frac{32}{33}\)

\(S=\frac{32}{33}:5\)

\(S=\frac{32}{165}\)

3 tháng 5 2019

S+..... 

là sao vậy ??

3 tháng 5 2019

S = NHA

7 tháng 5 2019

troll ng à

9 tháng 7 2019

\(1,\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}=\frac{12}{15}+\frac{12}{35}+\frac{12}{63}+\frac{12}{99}=6\left(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\right)=6\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).Tacocongthuc:\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n\left(n+k\right)}\Rightarrow\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}=6\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-.....-\frac{1}{11}\right)=6\left(\frac{1}{3}-\frac{1}{11}\right)=\frac{48}{33}=\frac{16}{11}\)

\(2,\left(x+1\right)+\left(x+2\right)+.....+\left(x+211\right)=211x+\left(1+2+....+211\right)=211x+\frac{212.211}{2}=211x+22366=23632\Leftrightarrow211x=23632-22366=1266\Leftrightarrow x=6\)

9 tháng 7 2019

a, \(14:\left(4\frac{2}{3}:1\frac{5}{9}\right)+14:\left(\frac{2}{3}+\frac{8}{9}\right)\)

=> \(14:\frac{28}{9}+14:\frac{14}{9}=>14.\frac{9}{28}+14.\frac{9}{14}\)

=> 14. ( \(\frac{9}{28}+\frac{9}{14}\) )

=> \(14.\frac{27}{28}=\frac{419}{28}\)

b, \(\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}\)

=> \(\frac{4}{5}+\frac{12}{35}+\frac{4}{21}+\frac{4}{33}\)

=> \(\frac{8}{7}+\frac{24}{77}=\frac{16}{11}\)

bài 2 :

( x + 1 ) + ( x + 2 ) + ... + ( x + 211 ) = 23632

=> ( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 211 ) = 23632

=> 211x + 22366 = 23632

=> 211x = 23632 - 22366

=> 211x = 1266

=> x = 1266 : 211

x = 6

23 tháng 6 2018

a, Ta có :

\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{1\cdot2\cdot3\cdot4}+...+\dfrac{1}{1\cdot2\cdot3\cdot...\cdot100}\\ < \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}< 1\\ \Rightarrow M< 1\\ \RightarrowĐpcm\)

2 tháng 7 2020

\(S=\frac{1}{9}+\frac{1}{45}+\frac{1}{105}+\frac{1}{189}+\frac{1}{297}=\frac{1}{3}\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\)

\(=\frac{1}{3}.\frac{1}{2}\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\right)=\frac{1}{6}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)

\(=\frac{1}{6}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)=\frac{1}{6}\left(1-\frac{1}{11}\right)=\frac{1}{6}.\frac{10}{11}\)

\(=\frac{5}{33}\)

3 tháng 7 2020

Bài làm:

\(S=\frac{1}{9}+\frac{1}{45}+\frac{1}{105}+\frac{1}{189}+\frac{1}{297}\)

\(S=\frac{1}{6}\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\right)\)

\(S=\frac{1}{6}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)

\(S=\frac{1}{6}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+\frac{11-9}{9.11}\right)\)

\(S=\frac{1}{6}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)

\(S=\frac{1}{6}\left(1-\frac{1}{11}\right)\)

\(S=\frac{1}{6}.\frac{10}{11}=\frac{5}{33}\)

Vậy \(S=\frac{5}{33}\)

Xin lỗi bạn Xyz nhé, mk ko có chép bài bạn đâu! với lại mk cx ko k sai bài bn đâu nhé!