Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(P=1+\frac{9}{45}+\frac{9}{105}+\frac{9}{189}+...+\frac{9}{29997}\)
\(P=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\)
\(P=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101} \right)\)
\(P=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(P=\frac{3}{2}\left(1-\frac{1}{101}\right)\)
\(P=\frac{3}{2}\times\frac{100}{101}\)
\(P=\frac{150}{101}\)
S=\(\frac{1}{3}.\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{4950}\right)\)
S=\(\frac{1}{3}.2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)
S=\(\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
S=\(\frac{2}{3}.\left(1-\frac{1}{100}\right)=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
#)Giải :
\(\frac{1}{15}+\frac{4}{30}+\frac{9}{45}+\frac{16}{60}+...+\frac{81}{135}=\frac{1}{15}+\frac{2}{15}+\frac{3}{15}+...+\frac{9}{15}=\frac{45}{15}=3\)
Dễ ẹc ak :v rút gọn là ra
=(\(\frac{1}{15}\)+\(\frac{4}{30}\)+\(\frac{16}{60}\)+\(\frac{64}{120}\))+(\(\frac{9}{45}\)+\(\frac{36}{90}\))+(\(\frac{25}{75}\)+\(\frac{81}{135}\))
=(\(\frac{8}{120}\)+\(\frac{16}{120}\)+\(\frac{32}{120}\)+\(\frac{64}{120}\))+(\(\frac{18}{90}\)+\(\frac{36}{90}\))+\(\frac{14}{15}\).
=1+\(\frac{3}{5}\)+\(\frac{14}{15}\).
=\(\frac{8}{5}\)+\(\frac{14}{15}\).
=\(\frac{15}{38}\)
\(S=\frac{1}{3}+\frac{1}{9}+\frac{1}{18}+\frac{1}{30}+\frac{1}{45}+...+\frac{1}{14850}\)
\(\Rightarrow\frac{3}{2}S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=\frac{1}{3}+\frac{1}{9}+\frac{1}{30}+\frac{1}{45}+...+\frac{1}{14850}\)
\(\Rightarrow\frac{3}{2}S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
Vậy S = \(\frac{99}{100}:\frac{3}{2}\) = \(\frac{33}{50}\)
S = 1/9 + 1/45 + 1/105 + 1/189 + 1/297
=> S = 1/2 ( 6/27 + 6/135 + 6/315 + 6/567 + 6/891 )
=> S = 1/2 ( 6/3.9 + 6/9.15 + 6/15.21 + 6/21.27 + 6/27.33 )
=> S = 1/2 ( 1/3 - 1/9 + 1/9 - 1/15 + ... + 1/27 - 1/33 )
=> S = 1/2 ( 1/3 - 1/33 )
=> S = 1/2 . 10/33
=> S = 5/33
\(S=\frac{1}{9}+\frac{1}{45}+\frac{1}{105}+\frac{1}{189}+\frac{1}{297}\)
\(S=\frac{1}{1.9}+\frac{1}{9.5}+\frac{1}{5.21}+\frac{1}{21.9}+\frac{1}{9.33}\)
\(5S=\frac{5}{1.9}+\frac{5}{9.5}+\frac{5}{5.21}+\frac{5}{21.9}+\frac{5}{9.33}\)
\(5S=1-\frac{1}{9}+\frac{1}{9}-\frac{1}{5}+\frac{1}{5}+\frac{1}{21}+\frac{1}{21}-\frac{1}{9}+\frac{1}{9}-\frac{1}{33}\)
\(5S=1-\frac{1}{33}\)
\(5S=\frac{32}{33}\)
\(S=\frac{32}{33}:5\)
\(S=\frac{32}{165}\)