Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. vô nghiệm vì tổng hai số dương chỉ bằng ko khi chúng đồng thời bằng 0
b. tổng 3 số dưng =0 khi dồng thời cả 3 bằng 0
vậy x=1; y=-1; z=1
c.tổng 3 số dưng luông lớn hơn bằng ko
vậy x=1/3; y=2; z=1
d tương tự
x-z=0
x+y=0
z+1/4=0
.............
z=-1/4
x=-1/4
y=1/4
ta có 4x=3y => x/3=y/4 => x/9=y/12(1)
5y=3z => y/3=z/5 => y/12=z/20(2)
Từ (1) và (2) => x/9=y/12=z/20
=> 2x/18=3y/36=z/20
=> 2x/18=3y/36=z/20=(2x-3y+x)/(18-36+20)
= 6/2=3
sau đó bạn tự tính x,y,z nha. ủng hộ nhé
ta có;\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)
\(5y=3z\Rightarrow\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
suy ra\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{-2}=-3\)
ta có;x=-3.9=-27
y=-3.12=-36
z=-3.20=-60
a) Đặt \(\frac{x}{5}=\frac{y}{7}=k\)
\(\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)
\(\Rightarrow xy=5k.7k\)
\(\Rightarrow140=35k^2\)
\(\Rightarrow k^2=4\)
\(\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
Với k = 2 ta có :
+) \(\frac{x}{5}=2\Rightarrow x=10\)
+) \(\frac{y}{7}=2\Rightarrow y=14\)
Với k = -2 ta có :
+) \(\frac{x}{5}=-2\Rightarrow x=-10\)
+) \(\frac{y}{7}=-2\Rightarrow y=-14\)
Vậy \(\left(x;y\right)=\left\{\left(10;14\right);\left(-10;-14\right)\right\}\)
b) Ta có :
\(x:y:z\)\(=\)\(2:5:7\)\(\Rightarrow\)\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\)\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)
+) \(\frac{x}{2}=3\Rightarrow x=6\)
+) \(\frac{y}{5}=3\Rightarrow y=15\)
+) \(\frac{z}{7}=3\Rightarrow z=21\)
Vậy x = 6, y = 15 và z = 21
_Chúc bạn học tốt_
a, x.y/5.7=140/35
=140/35=4
x/5=4/7
x/7=5/4
x.7=5.4
x.7=20
x=20;7
x=20/7
b,chịu
tk thì tk ko tk cx đc
b) \(\dfrac{3}{x+1}=\dfrac{4}{y-2}=\dfrac{5}{z-3}=\dfrac{3+4+5}{\left(1-2-3\right)+\left(x+y+z\right)}=\dfrac{12}{14}=\dfrac{6}{7}\)
Ta có: \(\dfrac{3}{x+1}=\dfrac{6}{7}\Rightarrow x+1=\dfrac{7}{2}\Rightarrow x=\dfrac{5}{2}\)
\(\dfrac{4}{y-2}=\dfrac{6}{7}\Rightarrow y-2=\dfrac{14}{3}\Rightarrow y=\dfrac{20}{3}\)
\(\dfrac{5}{z-3}=\dfrac{6}{7}\Rightarrow z-3=\dfrac{35}{6}\Rightarrow z=\dfrac{53}{6}\)
Vậy...............
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+1+y+2+z+3}{3+4+5}=\frac{24}{12}=2\)
\(\frac{x+1}{3}=2\Rightarrow x+1=6\Rightarrow x=5\)
\(\frac{y+2}{4}=2\Rightarrow y+2=8\Rightarrow y=6\)
\(\frac{z+3}{5}=2\Rightarrow z+3=10\Rightarrow z=7\)
Vậy x=5;y=6;z=7
a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)và\(x-y-z=-27\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)
Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)
\(\frac{y}{14}=9\Rightarrow y=9.14=126\)
\(\frac{z}{10}=9\Rightarrow z=9.10=90\)
Vậy:\(x=189;y=126\)và\(z=90\)
b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và\(x^2-2y^2+z^2=18\)
\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)và\(x^2-2y^2+z^2=18\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)
Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)
\(\frac{x-1}{5}=\frac{y+4}{-3}=\frac{z-2}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{5}=\frac{y+4}{-3}=\frac{z-2}{1}=\frac{\left(x-1\right)-5\left(y+4\right)+\left(z-2\right)}{5-5.\left(-3\right)+1}=\frac{-5}{21}\)
\(\Leftrightarrow\hept{\begin{cases}x-1=-\frac{5}{21}.5\\y+4=\frac{-5}{21}.\left(-3\right)\\z-2=-\frac{5}{21}.1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{4}{21}\\y=\frac{-23}{7}\\z=\frac{37}{21}\end{cases}}\)