Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x = 4k
y = 7k
=> 4k.7k = 112
=> 28.k^2 = 112
=> k^2 = 112 : 28 = 4
=> k = 2
=> x = 4.2 = 8
y = 7.2 = 14
\(\frac{x-1}{2}\)= \(\frac{2y-4}{6}\)=\(\frac{3z-9}{12}\)=\(\frac{x-1-2y+4+3z-9}{2-6+12}\)= \(\frac{14-1+4-9}{8}\)= 1
=> x =2+1=3
y= (6+4) : 2=5
z=(12+9) : 3=7
a, Điều kiện: 3x - 2 ≥ 0 => 3x ≥ 2 => x ≥ 2/3
Ta có: |2x + 1| = 3x - 2
\(\Rightarrow\orbr{\begin{cases}2x+1=3x-2\\2x+1=2-3x\end{cases}}\Rightarrow\orbr{\begin{cases}2x-3x=-2-1\\2x+3x=2-1\end{cases}}\Rightarrow\orbr{\begin{cases}-x=-3\\5x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{5}(lọai)\end{cases}}\)
Vậy x = 3
b, \(\frac{5}{x}=\frac{x}{25}\)\(\Rightarrow x^2=5.25\)\(\Rightarrow x^2=125\)\(\Rightarrow\orbr{\begin{cases}x=5\sqrt{5}\\x=-5\sqrt{5}\end{cases}}\)
a,|2x+1| = 3x-2 (1)
Ta có \(\left|2x+1\right|\ge0\forall x\)
=> 3x - 2 \(\ge0\)
\(\Rightarrow3x\ge2\)
\(\Rightarrow x\ge\frac{2}{3}>0\)
\(\Rightarrow2x>0\)
\(\Rightarrow2x+1>1>0\)
\(\Rightarrow\left|2x+1\right|=2x+1\) (2)
Từ (1) và (2) => \(2x+1=3x-2\)
\(\Rightarrow3x-2x=1+2\)
\(\Rightarrow x=3\)
Vậy x = 3
b, \(\frac{5}{x}=\frac{x}{25}\)
\(\Rightarrow x^2=25.5=125\)
\(\Rightarrow\orbr{\begin{cases}x=\sqrt{25}\\x=-\sqrt{25}\end{cases}}\)
Vậy \(x\in\left\{\sqrt{25};-\sqrt{25}\right\}\)
P/ s: Câu a là làm theo cách ngu học của mình
Có sai thì thông cảm
\(\frac{x-5}{3}=\frac{y-4}{4}=\frac{z-3}{5}=\frac{x-5+y-4+z-3}{3+4+5}=\frac{36-12}{12}=\frac{24}{12}=2\)
\(\Rightarrow\hept{\begin{cases}x-5=6\\y-4=8\\z-3=10\end{cases}}\Rightarrow\hept{\begin{cases}x=11\\y=12\\z=13\end{cases}}\)
1) Áp dụng tích chất dãy tỉ số bằng nhau ta có:
\(\frac{x+y}{2015}=\frac{xy}{2016}=\frac{x-y}{2017}=\frac{x+y-x+y}{2015-2017}=\frac{2y}{-2}\)
\(=-y\)
\(\Rightarrow xy=-2016y;x+y=-2015y;\)
\(x-y=-2017y\)
\(\Rightarrow-2016y-xy=0\)
\(\Rightarrow y\left(-2016-x\right)=0\)
\(\Rightarrow\orbr{\orbr{\begin{cases}y=0\\-2016-x=0\end{cases}\Rightarrow}}\orbr{\begin{cases}y=0\\x=-2016\end{cases}}\)
\(+) \)\(y=0\Rightarrow0+x=-2015.0=0\Rightarrow x=0\)
\(+) \)\(x=-2016\Rightarrow-2016-y=-2017y\Rightarrow-2016\)
Vậy +) x=y=0
+) x=-2016;y=1
2) Có: \(\frac{2x+2}{3}=\frac{x+1}{1,5};\frac{4z+2}{5}=\frac{z+0,5}{1,25};\frac{3y-1}{4}=\frac{y-\frac{1}{3}}{\frac{4}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{1,5}=\frac{y-\frac{1}{3}}{\frac{4}{3}}=\frac{z+0,5}{1,25}=\frac{x+y+z+\left(1-\frac{1}{3}+0,5\right)}{1,5+\frac{4}{3}+1,25}=\frac{7+\frac{7}{6}}{\frac{49}{12}}=2\)
Suy ra: \(x+1=2.1,5=3\Rightarrow x=2\)
\(y-\frac{1}{3}=2.\frac{4}{3}=\frac{8}{3}\Rightarrow y=3\)
\(z+0,5=2.1,25=2,5\Rightarrow z=2\)
Vậy x=2;y=3;z=2.
câu 1: Câu hỏi của Vương Ái Như - Toán lớp 7 - Học toán với OnlineMath
câu 2:
Ta có: \(8^7-2^{18}=2^{21}-2^{18}=2^{17}.\left(2^4-2\right)=2^{17}.14⋮14\)
câu 3:
\(4x=7y=3x\Rightarrow\frac{4x}{84}=\frac{7y}{84}=\frac{3z}{84}\Rightarrow\frac{x}{21}=\frac{y}{12}=\frac{z}{28}=\frac{x+y+z}{21+12+28}=\frac{61}{61}=1\)
\(\Rightarrow x=21,y=12,z=28\)
câu 4:
\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\Rightarrow\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}\Rightarrow\frac{a}{2.6}=\frac{2b}{3.6}=\frac{3c}{4.6}\Rightarrow\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{12-9}=\frac{15}{3}=5\)
\(\Rightarrow a=5.12=60,b=9.5=45,c=8.5=40\)