K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

Ta có : \(\frac{x-1}{3}=\frac{y-4}{6}=\frac{y-4-\left(x-1\right)}{6-3}\)  \(=\frac{y-4-x+1}{3}=\frac{y-x-3}{3}=\frac{1}{3}\)

Nên : \(\frac{x-1}{3}=\frac{1}{3}\Rightarrow x-1=1\Rightarrow x=2\)

           \(\frac{y-4}{6}=\frac{1}{3}\Rightarrow y-4=2\Rightarrow y=6\)

Vậy x = 2 ; y = 6 

16 tháng 9 2021

\(\dfrac{x-1}{5}=\dfrac{y-2}{3}=\dfrac{z-2}{2}=\dfrac{2y-4}{6}=\dfrac{x-1+2y-4-z+2}{5+6-2}=\dfrac{6-5}{9}=\dfrac{1}{9}\)

\(\Rightarrow\left\{{}\begin{matrix}9x-9=5\\9y-18=3\\9z-18=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{14}{9}\\y=\dfrac{7}{3}\\z=\dfrac{20}{9}\end{matrix}\right.\)

16 tháng 9 2021

Bn giỏi thế, làm giáo viên của mik ko

a) Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)

nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{2x}{3}=12\\\dfrac{3y}{4}=12\\\dfrac{4z}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\3y=48\\4z=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=20\end{matrix}\right.\)

Vậy: (x,y,z)=(18;16;20)

b) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k\\y=3k\end{matrix}\right.\)

Ta có: \(x^2-y^2=4\)

\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)

\(\Leftrightarrow16k^2=4\)

\(\Leftrightarrow k\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

Trường hợp 1: \(k=\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{1}{2}=\dfrac{5}{2}\\y=3k=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)

Trường hợp 2: \(k=-\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{-1}{2}=\dfrac{-5}{2}\\y=3k=3\cdot\dfrac{-1}{2}=\dfrac{-3}{2}\end{matrix}\right.\)

Vậy: \(\left(x,y\right)\in\left\{\left(\dfrac{5}{2};\dfrac{3}{2}\right);\left(-\dfrac{5}{2};-\dfrac{3}{2}\right)\right\}\)

 

3 tháng 7 2021

a)

 

Theo tính chất của dãy tỉ số bằng nhau, ta có : 

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Suy ra : 

\(x=\dfrac{12.3}{2}=18\\ y=\dfrac{12.4}{3}=16\\ z=\dfrac{12.5}{4}=15\)

b)

\(x=\dfrac{y}{3}.5=\dfrac{5y}{3}\\ x^2-y^2=4\\ \Leftrightarrow\left(\dfrac{5y}{3}\right)^2-y^2=4\\ \Leftrightarrow\dfrac{16y^2}{9}=4\Leftrightarrow y=\pm\dfrac{3}{2} \)

Với $y = \dfrac{3}{2}$ thì $x = \dfrac{5}{2}$

Với $y = \dfrac{-3}{2}$ thì $x = \dfrac{-5}{2}$

c)

\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{1}{2}\)

Suy ra : 

\(2x=y+z+1\Leftrightarrow y+z=2x-1\)

Mặt khác : 

\(x+y+z=\dfrac{1}{2}\Leftrightarrow x+2x-1=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)

\(2y=x+z+1=z+\dfrac{3}{2}\)

Mà \(y+z=0\Leftrightarrow z=-y\)

nên suy ra:  \(y=\dfrac{1}{2};z=-\dfrac{1}{2}\)

12 tháng 7 2023

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}+\dfrac{x+y-3}{z}\\ =\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(z+y+x\right)}{x+y+z}=2\\ \to\left\{{}\begin{matrix}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\end{matrix}\right.\to\left\{{}\begin{matrix}x+y+z=3x-1\\x+y+z=3y-2\\x+y+z=3z+3\end{matrix}\right.\)

Mặt khác \(\dfrac{1}{x+y+z}=2\to x+y+z=\dfrac{1}{2}\)

\(\to\left\{{}\begin{matrix}3x-1=\dfrac{1}{2}\\3y-2=\dfrac{1}{2}\\3z+3=\dfrac{1}{2}\end{matrix}\right.\to\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=-\dfrac{5}{6}\end{matrix}\right.\)

29 tháng 12 2021

\(\Rightarrow\dfrac{2x}{6}=\dfrac{3y}{6}=\dfrac{z}{6}\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{6}=\dfrac{x+y+z}{3+2+6}=\dfrac{11}{11}=1\\ \Rightarrow\left\{{}\begin{matrix}x=3\\y=2\\z=6\end{matrix}\right.\Rightarrow z-x=6-3=3\left(A\right)\)

10 tháng 9 2016

dùng tính chất tỉ lệ thức: a/b = c/d = e/f = (a+b+c)/(b+d+f) (có b+d+f # 0) 
* trước tiên ta xét trường hợp x+y+z = 0 có 
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = 0 => x = y = z = 0 
* xét x+y+z = 0, tính chất tỉ lệ thức: 
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2 
=> x+y+z = 1/2 và: 
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2 
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2 
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2 

Vậy có căp (x,y,z) thỏa mãn: (0,0,0) và (1/2,1/2,-1/2) 

10 tháng 9 2016

dùng tính chất tỉ lệ thức: a/b = c/d = e/f = (a+b+c)/(b+d+f) (có b+d+f # 0) 
* trước tiên ta xét trường hợp x+y+z = 0 có 
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = 0 => x = y = z = 0 
* xét x+y+z = 0, tính chất tỉ lệ thức: 
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2 
=> x+y+z = 1/2 và: 
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2 
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2 
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2 

Vậy có căp (x,y,z) thỏa mãn: (0,0,0) và (1/2,1/2,-1/2) 

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{x+y}{4+5}=\dfrac{18}{9}=2\)

Do đó: x=8; y=10

Đề bài mk có chút thắc mắc

\(\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}????!!!!!\)

Mk nghĩ phải là = ms đúng chứ. Sao lại là +

25 tháng 12 2019

Cho x+y+z=2020, x+y/z + x+z/y + y+z/x=7

mik thiếu số 7 nha