Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
R(x) = 2x2 + 3x - 1
- M(x) = -x3 + x2
x3 + x2 + 3x - 1
Vậy R(x) - M(x) = x3 + x2 + 3x - 1
a) \(\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=3\\2x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
c) \(2x\left(3x-1\right)-3x\left(5+2x\right)=0\)
\(\Rightarrow x\left[2\left(3x-1\right)-3\left(5+2x\right)\right]=0\)
\(\Rightarrow x\left(6x-2-15-6x\right)\)
\(\Rightarrow-16x=0\)
\(\Rightarrow x=0\)
d) \(\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\)
\(\Rightarrow9x^2-4-4x+4=0\)
\(\Rightarrow9x^2-4x=0\)
\(\Rightarrow x\left(9x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)
\(a,\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ b,\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
a) 3/2.|x - 5/3| - 4/5 = 4/3.|x - 5/3| + 1
<=> 3/2.|x - 5/3| = 4/3.|x - 5/3| + 1 + 4/5
<=> 3/2.|x - 5/3| = 9/5 + 4|x - 5/3|/3
<=> 3/2.|x - 5/3| - 4.|x - 5/3|/3 = 9/5
<=> |x - 5/3|/6 = 9/5
<=> |x - 5/3| = 9/5.6
<=> |x - 5/3| = 54/5
<=> x - 5/3 = 54/5 hoặc x - 5/3 = -54/5
x = 54/5 + 5/3 x = -54/5 - 5/3
x = 187/15 x = -137/15
b) 2.|3x + 1| = 1/3.|3x + 1| + 5
<=> 2.|3x + 1| - 1/3.|3x + 1| = 5
<=> 5/3.|3x + 1| = 5
<=> 5.|3x + 1| = 5.3
<=> 5.|3x + 1| = 15
<=> |3x + 1| = 15 : 5
<=> |3x + 1| = 3
3x + 1 = 3 hoặc 3x + 1 = -3
3x = 3 - 1 3x = -3 - 1
3x = 2 3x = -4
x = 2/3 x = -4/3
=> x = 2/3 hoặc x = -4/3
c) làm tương tự câu a) mình hơi lời
Làm câu c) cho
\(\frac{1}{4}-\frac{5}{2}\left|3x-\frac{1}{5}\right|=\frac{2}{3}\left|3x-\frac{1}{5}\right|-\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{4}+\frac{2}{3}=\frac{2}{3}\left|3x-\frac{1}{5}\right|+\frac{5}{2}\left|3x-\frac{1}{5}\right|\)
\(\Leftrightarrow\frac{3}{12}+\frac{8}{12}=\left|3x-\frac{1}{5}\right|\left(\frac{2}{3}+\frac{5}{2}\right)\)
\(\Leftrightarrow\left|3x-\frac{1}{5}\right|\left(\frac{4}{6}+\frac{15}{6}\right)=\frac{11}{12}\)
\(\Leftrightarrow\frac{19}{6}\left|3x-\frac{1}{5}\right|=\frac{11}{12}\)
\(\Leftrightarrow\left|3x-\frac{1}{5}\right|=\frac{11}{12}.\frac{6}{19}\)
\(\Leftrightarrow\left|3x-\frac{1}{5}\right|=\frac{11}{38}\)
\(\Leftrightarrow\orbr{\begin{cases}3x-\frac{1}{5}=\frac{11}{38}\\3x-\frac{1}{5}=-\frac{11}{38}\end{cases}}\)
Giải tiếp nha
a: \(=\dfrac{2x^4+x^3-5x^2-3x-3}{x^2-3}\)
\(=\dfrac{2x^4-6x^2+x^3-3x+x^2-3}{x^2-3}\)
\(=2x^2+x+1\)
b: \(=\dfrac{x^5+x^2+x^3+1}{x^3+1}=x^2+1\)
c: \(=\dfrac{2x^3-x^2-x+6x^2-3x-3+2x+6}{2x^2-x-1}\)
\(=x+3+\dfrac{2x+6}{2x^2-x-1}\)
d: \(=\dfrac{3x^4-8x^3-10x^2+8x-5}{3x^2-2x+1}\)
\(=\dfrac{3x^4-2x^3+x^2-6x^3+4x^2-2x-15x^2+10x-5}{3x^2-2x+1}\)
\(=x^2-2x-5\)
a: \(P\left(x\right)=2x^3+x^2+x+2\)
\(Q\left(x\right)=x^3+x^2+x+1\)
b: \(P\left(-1\right)=2\cdot\left(-1\right)+1-1+2=0\)
\(Q\left(-1\right)=-1+1-1+1=0\)
Do đó: x=-1 là nghiệm chung của P(x), Q(x)
\(P\left(x\right)=2x^3-2x+x^2+3x+2\)
\(P\left(x\right)=2x^3+x^2+x+2\)
\(Q\left(x\right)=4x^3-3x^2-3x+4x-3x^3+4x^2+1\)
\(Q\left(x\right)=x^3+x^2+x+1\)
__________________________________________________
\(P\left(-1\right)=2.\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+2\)
\(P\left(-1\right)=0\)
\(Q\left(-1\right)=\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+1\)
\(Q\left(-1\right)=0\)
Vậy x = -1 là nghiệm của P(x),Q(x)
1: (3x+2)(x+2)(2x-1)
=(3x^2+6x+2x+4)(2x-1)
=(3x^2+8x+4)(2x-1)
=6x^3-3x^2+16x^2-8x+8x-4
=6x^3+13x^2-4
2: (5x+1)(x-1)+3x(2x+2)
=5x^2-5x+x-1+6x^2+6x
=11x^2+10x-1
3: 4x(2x+1)(x-1)+(x+5)(x-3)
=4x(2x^2-2x+x-1)+x^2+2x-15
=8x^3-4x^2-4x+x^2+2x-15
=8x^3-3x^2-2x-15
4: (2x-1)(x+2)(x-2)+(3x-1)(x-1)
=(2x-1)(x^2-4)+3x^2-4x+1
=2x^3-8x-x^2+4+3x^2-4x+1
=2x^3+2x^2-12x+5
Đăng ít một thôi bạn :v
a) 3x - (3 - 2x) = 0
3x - 3 + 2x = 0
5x - 3 = 0
5x = 0 + 3
5x = 3
x = 3/5
b) (x + 2).3 - 4x.3 = 0
3.(x + 2) - 12.x = 0
3[x + 2 - (4x)] = 0
x + 2 - 4 = 0
-3x + 2 = 0
-3x = 0 - 2
-3x = -2
x = 2/3
c) (x - 2)(x - 4)(1 - 7x) = 0
x - 2 = 0 hoặc x - 4 = 0 hoặc 1 - 7x = 0
x = 0 + 2 x = 0 + 4 -7x = 0 - 1
x = 2 x = 4 -7x = -1
x = 1/7
d) 4x2 - 1/4 = 0
4x2 = 0 + 1/4
4x2 = 1/4
x2 = 1/4 : 4
x2 = 1/16
x2 = (1/4)2
x = 1/4 hoặc x = -1/4
e) -3x2 + 48 = 0
3x2 - 48 = 0
3x2 = 0 + 48
3x2 = 48
x2 = 48 : 3
x2 = 16
x2 = 42
x = 4 hoặc x = -4
g) 3(1/2 - 1/3x)3 - 1/9 = 0
3(1/2 - x/3)3 - 1/9 = 0
3(1/2 - x/3)3 = 0 + 1/9
3(1/2 - x/3)3 = 1/9
(1/2 - x/3)3 = 1/9 : 3
(1/2 - x/3)3 = 1/27
(1/2 - x/3)3 = (1/3)3
1/2 - x/3 = 1/3
-x/3 = 1/3 - 1/2
-x/3 = -1/6
-x = -1/6.3
-x = -3/6 = -1/2
x = -1/2
m) 4x3 + 5x4 = 0
x3(4 + 5x) = 0
x = 0 hoặc 4 + 5x = 0
x = 0 5x = 0 - 4
5x = -4
x = -4/5
h) -x3 + 1/64x = 0
-x3 + x/64 = 0
x/64 - x3 = 0
x(1/64 - x3) = 0
x = 0 hoặc 1/64 - x2 = 0
x = 0 -x2 = 0 - 1/64
-x2 = -1/64
x2 = 1/64 = -+1/8
k) (x2 + 1)2 + 3x(x2 + 1) + 2 = 0
x4 + 2x2 + 1 + 3x3 + 3x + 2 = 0
x4 + 2x2 + 3 + 3x3 + 3x = 0
(x3 + 2x2 + 3)(x + 1) = 0
Mà x3 + 2x2 + 3 # 0 nên
x + 1 = 0
x = -1
c) \(\left(x-2\right).\left(x-4\right).\left(1-7x\right)\)
Cho \(\left(x-2\right).\left(x-4\right).\left(1-7x\right)=0\)
⇔ \(\left[{}\begin{matrix}x-2=0\\x-4=0\\1-7x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=0+2\\x=0+4\\7x=1-0=1\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=2\\x=4\\x=1:7\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=2\\x=4\\x=\frac{1}{7}\end{matrix}\right.\)
Vậy \(x=2;x=4\) và \(x=\frac{1}{7}\) đều là nghiệm của đa thức \(\left(x-2\right).\left(x-4\right).\left(1-7x\right)\)
d) \(4x^2-\frac{1}{4}\)
Cho \(4x^2-\frac{1}{4}=0\)
⇔ \(4x^2=0+\frac{1}{4}\)
⇔ \(4x^2=\frac{1}{4}\)
⇔ \(x^2=\frac{1}{4}:4\)
⇔ \(x^2=\frac{1}{16}\)
=> \(\left[{}\begin{matrix}x=\frac{1}{4}\\x=-\frac{1}{4}\end{matrix}\right.\)
Vậy \(x=\frac{1}{4}\) và \(x=-\frac{1}{4}\) đều là nghiệm của đa thức \(4x^2-\frac{1}{4}.\)
e) \(-3x^2+48\)
Cho \(-3x^2+48=0\)
⇔ \(-3x^2=0-48\)
⇔ \(-3x^2=-48\)
⇔ \(x^2=\left(-48\right):\left(-3\right)\)
⇔ \(x^2=16\)
=> \(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
Vậy \(x=4\) và \(x=-4\) đều là nghiệm của đa thức \(-3x^2+48.\)
Mình chỉ làm 3 câu thôi nhé.
Chúc bạn học tốt!
`1)` Yêu cầu là gì ạ?
`2)`
`P(x)-Q(x)=`\((6x^3-3x^2+5x-1)-(-6x^3+3x^2-2x+7)\)
`= 6x^3-3x^2+5x-1+6x^3-3x^2+2x-7`
`= (6x^3+6x^3)+(-3x^2-3x^2)+(5x+2x)+(-1-7)`
`= 12x^3-6x^2+7x-8`
`3)`
`(-3x^3+15x^2+81x):(-3x)`
`= (-3x^3) \div (-3x) + 15x^2 \div (-3x) + 81x \div (-3x)`
`= x^2-5x-27`
\(\left|x-\frac{1}{3}\right|=\left|2-3x\right|\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}=2-3x\\x-\frac{1}{3}=3x-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x=\frac{7}{3}\\2x=\frac{5}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{12}\\x=\frac{5}{6}\end{cases}}\)