Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu E
\(\left\{{}\begin{matrix}x\ne\dfrac{5}{2}\\\left(2x-5\right)\left(5-2x\right)=-\left(\dfrac{3}{2}\right)^4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{5}{2}\\\left|2x-5\right|=\left(\dfrac{3}{2}\right)^2\end{matrix}\right.\)
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\2x-5=-\left(\dfrac{3}{2}\right)^2\Rightarrow x=\dfrac{11}{8}< \dfrac{5}{2}\left(n\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{5}{2}\\2x-5=\left(\dfrac{3}{2}\right)^2\Rightarrow x=\dfrac{29}{8}>\dfrac{5}{2}\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
câu F (bạn cho vào lớp 7.2=lớp 14 nhé. )
b: 2x^3-1=15
=>2x^3=16
=>x=2
\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)
=>\(\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)
=>y-25=32; z+9=50
=>y=57; z=41
d: 3/5x=2/3y
=>9x=10y
=>x/10=y/9=k
=>x=10k; y=9k
x^2-y^2=38
=>100k^2-81k^2=38
=>19k^2=38
=>k^2=2
TH1: k=căn 2
=>\(x=10\sqrt{2};y=9\sqrt{2}\)
TH2: k=-căn 2
=>\(x=-10\sqrt{2};y=-9\sqrt{2}\)
3) 2x3-1=15 <=> x3=16/2=8=23 => x=2
\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}=\frac{x+16+y-25+z+9}{9+16+25}=\frac{x+y+z}{50}\)
=> \(\frac{x+16}{9}=\frac{x+y+z}{50}\)=> x+y+z=\(\frac{50\left(x+16\right)}{9}\)=\(\frac{50\left(2+16\right)}{9}=\frac{50.18}{9}=50.2=100\)
Vậy x+y+z=100
Bai 1
a) \(\sqrt{0,36}+\sqrt{0,49}=0,6+0,7=1,3\)
b) \(\sqrt{\frac{4}{9}}-\sqrt{\frac{25}{36}}=\frac{2}{3}-\frac{5}{6}\)
=\(-\frac{1}{6}\)
Bài 2
a)\(x^2=81\Rightarrow\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)
b) \(\left(x-1\right)^2=\frac{9}{16}\)
\(\Rightarrow\left[{}\begin{matrix}x-1=\frac{3}{4}\\x-1=\frac{-3}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{7}{4}\\x=\frac{1}{4}\end{matrix}\right.\)
c) \(x-2\sqrt{x}=0\Rightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
d) \(x=\sqrt{x}\Rightarrow x-\sqrt{x}=0\Rightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
\(S=1+2+2^2+.....+2^9\)
\(2S=2\left(1+2+2^2+2^3+.....+2^9\right)\)
\(2S=2+2^2+2^3+2^4+....+2^{10}\)
\(2S-S=\left(2+2^2+2^3+2^4+....+2^{10}\right)-\left(1+2+2^2+....+2^9\right)\)
\(S=2^{10}-1\)
Gọi: \(X=5.2^8\)
\(X=\left(1+4\right).2^8\)
\(X=1.2^8+4.2^8\)
\(X=2^8+2^2.2^8\)
\(X=2^8+2^{10}\)
\(S< X\)
b) \(\left(x+\frac{1}{2}\right)^3:3=-\frac{1}{81}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^3=\left(-\frac{1}{81}\right).3\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^3=-\frac{1}{27}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^3=\left(-\frac{1}{3}\right)^3\)
\(\Rightarrow x+\frac{1}{2}=-\frac{1}{3}\)
\(\Rightarrow x=\left(-\frac{1}{3}\right)-\frac{1}{2}\)
\(\Rightarrow x=-\frac{5}{6}\)
Vậy \(x=-\frac{5}{6}.\)
c) \(\frac{x-2}{2}=\frac{8}{x-2}\left(x\ne2\right).\)
\(\Rightarrow\left(x-2\right).\left(x-2\right)=8.2\)
\(\Rightarrow\left(x-2\right)^2=16\)
\(\Rightarrow\left(x-2\right)^2=\left(\pm4\right)^2\)
\(\Rightarrow x-2=\pm4.\)
\(\Rightarrow\left[{}\begin{matrix}x-2=4\\x-2=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4+2\\x=\left(-4\right)+2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\left(TM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)
Vậy \(x\in\left\{6;-2\right\}.\)
Chúc bạn học tốt!
(x-1/2)2=9/25
(x-1/2)2=(3/5)2
x-1/2=3/5
x=11/10
(x-1/2)^2=(3/5)^2
x-1/2=3/5
x=11/10