Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A-4=1+4+4^2+4^3+...+4^{2008}$
$4(A-4)=4+4^2+4^3+...+4^{2009}$
$\Rightarrow 4(A-4)-(A-4)=4^{2009}-1$
$\Rightarrow 3(A-4)=4^{2009}-1$
$\Rightarrow 3A=4^{2009}+11> 4^{2009}=4.4^{2008}$
$\Rightarrow A> \frac{4.4^{2008}}{3}> 4^{2008}$
$\Rightarrow 2A> 2.4^{2008}> 4^{2006}$ hay $2A> B$
Hay $A> \frac{B}{2}$
Đề sai bạn xem lại.
\(2^x+2^{x-1}+2^{x-2}=2^{x-2}.2^2+2^{x-2}.2+2^{x-2}\)\(=2^{x-2}\left(4+2+1\right)=2^{x-2}.7\)
thank you
( 1/2 + 1/3 + 1/4 + ... + 1/10 ) . x = 1/9 + 2/8 + ... + 9/1
=> x = ( 1/9 + 2/8 + ... + 9/1 ) : ( 1/2 + 1/3 + ... 1/10 )
=> x = ( 9/1 + 8/2 + ... + 2/8 + 1/9 ) : ( 1/2 + 1/3 + 1/4 + ... + 1/10 )
=>x = [ ( 9 - 1 - 1 -... - 1 ) +( 8/2 + 1 ) + ( 7/3 + 1 ) + ... + ( 1/9 + 1 ) ] : ( 1/2 + 1/3 + 1/4 + ... + 1/10 )
=> x = ( 1 + 10/2 + 10/3 + ... + 10/9 ) : ( 1/2 + 1/3 + 1/4 + ... + 1/10 )
=> x = [10 . ( 1/2 + 1/3 + ... + 1/9 ) ] : ( 1/2 + 1/3 + 1/4 + ... + 1/10 )
=> x = 10
Chúc Bạn Học Tốt
#𝗝𝘂𝗻𝗻
1) 41 - 2x + 1 = 9
-2x + 1 = 9 - 41
-2x + 1 = -32
2x + 1 = 32
2x + 1 = 25
x + 1 = 5
x = 5 - 1
x = 4
\(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=1\dfrac{1989}{1991}\)
\(\Rightarrow2\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{3980}{1991}\)
\(\Rightarrow2\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{3980}{1991}\)
\(\Rightarrow2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{3980}{1991}\)
\(\Rightarrow2\left(1-\dfrac{1}{x+1}\right)=\dfrac{3980}{1991}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{3980}{1991}.\dfrac{1}{2}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{1990}{1991}\)
\(\Rightarrow\dfrac{1}{x+1}=1-\dfrac{1990}{1991}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{1991}\)
\(\Rightarrow x+1=1991\)
\(\Rightarrow x=1990\)
(x-1)2 = 1
(x-1)2 = 12
=> x-1=1
x=1+1
x=2
Vậy x=2
_HT_