Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}mx+my=-3\\\left(1-m\right)x+y=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}mx+m.\left(m-1\right)x=-3\\y=\left(m-1\right)x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m^2x=-3\\y=\left(m-1\right)x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-3}{m^2}\\y=\left(m-1\right).\frac{-3}{m^2}\end{cases}}\)
Để phương trình có nghiệm âm thì ta có
\(\hept{\begin{cases}\frac{-3}{m^2}< 0\\\frac{-3.\left(m-1\right)}{m^2}< 0\end{cases}}\Leftrightarrow m>1\)
\(\hept{\begin{cases}2m^2x+3\left(m-1\right)y=3\\m\left(x+y\right)-2y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2m^2x+3\left(m-1\right)y=3\\y\left(m-2\right)=2-mx\end{cases}}\)
Với m = 2 thì hệ trở thành
\(\hept{\begin{cases}8x+3y=3\\2-2x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=\frac{-5}{3}\end{cases}}\)
Với \(m\ne2\)thì
\(\Leftrightarrow\hept{\begin{cases}2m^2x+3\left(m-1\right).\frac{2-mx}{\left(m-2\right)}=3\left(1\right)\\y=\frac{2-mx}{\left(m-2\right)}\left(2\right)\end{cases}}\)
Từ (1) ta có
\(\left(2m^3-7m^2+3m\right)x=-3m\)
Với \(\hept{\begin{cases}2m^3-7m^2+3m=0\\-3m=0\end{cases}}\Leftrightarrow m=0\)
Thì phương trình có vô số nghiệm (x,y) thõa y = - 1; x tùy ý
Với \(\hept{\begin{cases}2m^3-7m^2+3m=0\\-3m\ne0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{2}\\m=3\end{cases}}\)
Thì hệ pt vô nghiệm
Với \(\hept{\begin{cases}2m^3-7m^2+3m\ne0\\-3m\ne0\end{cases}}\Leftrightarrow m\ne0;0,5;3\)
Thì hệ có nghiệm là
\(\hept{\begin{cases}x=\frac{3-3\left(m-1\right).\frac{2-mx}{\left(m-2\right)}}{2m^2}\\y=\frac{2-mx}{\left(m-2\right)}\end{cases}}\)
\(\hept{\begin{cases}2m^2x+3\left(m-1\right)y=3\\m\left(x+y\right)-2y=2\end{cases}}\)
Với m = 2 thì e giải nhé
Với m khác 2 thì
\(\Leftrightarrow\hept{\begin{cases}2m^2x+3\left(m-1\right).\frac{2-mx}{m-2}=3\left(1\right)\\y=\frac{2-mx}{m-2}\left(2\right)\end{cases}}\)
Xét (1) quy đồng rồi chuyển cái có x sang 1 vế phần còn lại sang 1 vế. Rồi biện luận nhé
HPT : \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{5}{36}\\\frac{4}{x}+\frac{3}{y}=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{3}{x}+\frac{3}{y}=\frac{5}{12}\left(1\right)\\\frac{4}{x}+\frac{3}{y}=\frac{1}{2}\left(2\right)\end{cases}}\)
Từ (1) và (2), lấy vế trừ vế ta được :
\(\Leftrightarrow\left(\frac{4}{x}+\frac{3}{y}\right)-\left(\frac{3}{x}+\frac{3}{y}\right)=\frac{1}{2}-\frac{5}{12}\)
\(\Leftrightarrow\frac{1}{x}=\frac{1}{12}\)
\(\Leftrightarrow\frac{1}{y}=\frac{5}{36}-\frac{1}{x}=\frac{5}{36}-\frac{1}{12}=\frac{1}{18}\)
\(\Leftrightarrow\hept{\begin{cases}x=12\\y=18\end{cases}}\)
1)x^4+x^2-6x+1=0>>>x^4+4x^2+4-3x^2-6x-3=0>>>(x^2+2)^2=3(x-1)^2.
>>Sau đó giải bt.
2)Đặt x^2-x+1=a;x+1=b thì:x^3+1=ab.
Pt:2a+5b^2+14ab=0(tự giải nha)
để tui lm cho
áp dụng đẳng thức \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
<=> \(1-3xyz=1\left(1-xy-yz-zx\right)\)
<=> \(3xyz=xy+yz+zx\)
mặt khác ta có 1=(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2zx
<=> 1=1+2(xy+yz+zx)
<=> xy+yz+zx=0
<=> 3xyz=0
<=> \(\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
đến đấy cậu tự lm nốt nhé
mà pn tuấn anh j ơi ,, bài này mk tìm đc 3 cặp nghiệm luôn á (x;y;z)=(0;0;1);(0;1;0);(1;0;0)
pn giải cụ thể ra giúp mk vs
\(\left\{{}\begin{matrix}x^3+1=2x\left(1\right)\\y^3+1=2y\left(2\right)\end{matrix}\right.\)
Lấy (1)-(2) có:
HPT \(\Leftrightarrow\left\{{}\begin{matrix}x^3+y^3+x^2y+xy^2=5\\x^3+y^3-x^2y-xy^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^3+y^3=4\\x^2y+xy^2=1\end{matrix}\right.\)
\(\Leftrightarrow x^3+y^3+3x^2y+3xy^2=4+3=7\)
\(\Leftrightarrow\left(x+y\right)^3=7\Leftrightarrow x+y=\sqrt[3]{7}\Leftrightarrow x=\sqrt[3]{7}-y\)(1)
Đến đây bạn thay (1) vào một trong những phương trình trên kia để tìm x , y. Số xấu quá nên mình cũng lười làm lắm.
\(\hept{\begin{cases}x-1=0\\x+y=3\end{cases}}\)
\(\hept{\begin{cases}x=0+1\\y=3-x\end{cases}}\)
\(\hept{\begin{cases}x=1\\y=3-1\end{cases}}\)
\(\hept{\begin{cases}x=1\\y=2\end{cases}}\)