Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CHI GIẢI CHO NÈ
A=\(\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x-3\right)}=\frac{x-1}{x-3}\)
de A <1 \(\Leftrightarrow\frac{x-1}{x-3}< 1\Leftrightarrow\frac{x-1}{x-3}-1< 0\)
\(\Leftrightarrow\frac{2}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)
a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x^3+1\right)-\left(x^3-1\right)\)
\(=x^3+1-x^3+1\)
\(=2\)
Biểu thức trên có giá trị bằng 2 với mọi x nên không phụ thuộc vào biến.
b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)
\(=\left(8x^3+27y^3\right)-\left(8x^3-27y^3\right)-27\left(2y^3-1\right)\)
\(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)
\(=27\)
Biểu thức trên có giá trị bằng 27 với mọi x nên không phụ thuộc vào biến.
c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)
\(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)
\(=-65\)
Biểu thức trên có giá trị bằng -65 với mọi x nên không phụ thuộc vào biến.
d) \(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)
\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)
\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2\)
\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)
\(=0\)
Biểu thức trên có giá trị bằng 0 với mọi x nên không phụ thuộc vào biến.
\(\dfrac{x}{a}=\dfrac{m-\dfrac{x}{2}}{m}\)
\(\Rightarrow xm=a\left(m-\dfrac{x}{2}\right)\)
\(\Rightarrow xm=am-\dfrac{ax}{2}\)
\(\Rightarrow2xm=2am-ax\)
\(\Rightarrow2xm+ax=2am\)
\(\Rightarrow x\left(2m+a\right)=2am\)
\(\Rightarrow x=\dfrac{2am}{a+2m}\)
\(\left(x^3-x^2-5x+21\right):\left(x^2-4x+7\right)\)
\(=\left(x^3-4x^2+3x^2+7x-12x+21\right):\left(x^2-4x+7\right)\)
\(=\left[\left(x^3-4x^2+7x\right)+\left(3x^2-12x+21\right)\right]:\left(x^2-4x+7\right)\)
\(=\left[x\left(x^2-4x+7\right)+3\left(x^2-4x+7\right)\right]:\left(x^2-4x+7\right)\)
\(=\left[\left(x^2-4x+7\right)\left(x+3\right)\right]:\left(x^2-4x+7\right)\)
\(=x+3\)
a) (2x2 - x) + 4x - 2 = 0
x(2x - 1) + 2(2x - 1) = 0
(2x - 1)(x + 2) = 0
2x - 1 = 0 hoặc x + 2 = 0
* 2x - 1 = 0
2x = 1
x = \(\frac{1}{2}\)
* x + 2 = 0
x = -2
Vậy x = -2; x = \(\frac{1}{2}\)
b) x2 - 6x + 8 = 0
x2 - 2x - 4x + 8 = 0
(x2 - 2x) + (-4x + 8) = 0
x(x - 2) - 4(x - 2) = 0
(x - 2)(x - 4) = 0
x - 2 = 0 hoặc x - 4 = 0
* x - 2 = 0
x = 2
* x - 4 = 0
x = 4
Vậy x = 2; x = 4
c) x4 - 8x2 - 9 = 0
x4 + x2 - 9x2 - 9 = 0
(x4 - 9x2) + (x2 - 9) = 0
x2(x2 - 9) + (x2 - 9) = 0
(x2 - 9)(x2 + 1) = 0
x2 - 9 = 0 (vì x2 + 1 > 0 với mọi x)
x2 = 9
x = 3 hoặc x = -3
Vậy x = 3; x = -3
<=>x3+x3-6x2+12x-8=8x3-24x2+24x-8
<=>-6x3+18x2-12x=0
<=>-x(6x2-18x+12)=0
<=>-x(6x2-6x-12x+12)=0
<=>-x(6x-12)(x-1)=0
<=>x=0;2;1
Ta có \(x^3+\left(x-2\right)^3=\left(2x-2\right)^3\)
\(\Rightarrow x^3+\left(x-2\right)^3-\left(2x-2\right)^3=0\)
\(\Rightarrow x^3+\left(x-2\right)^3+\left(2-2x\right)^3=0\)
Đặt \(x=a;x-2=b;2-2x=c\)
\(a+b+c=x+x-2+2-2x=0\)
Xét bài toán phụ \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)
\(a^3+b^3+c^3=\left(a+b\right)^3+c^3-3a^2b-3ab^2\)
= \(\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)
\(=\left(-c\right)^3+c^3-3ab\left(-c\right)=3abc\)
\(\Rightarrow x^3+\left(x-2\right)^3+\left(2-2x\right)^3=3x\left(x-2\right)\left(2-2x\right)=0\)
\(\Rightarrow x=0\) hoặc \(x-2=0\Rightarrow x=2\) hoặc \(2-2x=0\Rightarrow2x=2\Rightarrow x=1\)
Vậy phương trình có tập nghiệm \(S=\left\{0;2;1\right\}\)
Ta thấy : \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|\ge0\forall x\)
Mà \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|=4x\) nên \(4x\ge0\)
\(\Rightarrow x\ge0\)
Khi đó : \(\hept{\begin{cases}\left|x+1\right|=x+1\\\left|x+2\right|=x+2\\\left|x+3\right|=x+3\end{cases}}\)
Do đó ta có :\(x+1+x+2+x+3=4x\)
\(\Leftrightarrow3x+6=4x\)
\(\Leftrightarrow x=6\) ( thoả mãn )
Vậy \(x=6\)