Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left|2x-3y\right|+\left|2y-4z\right|=0\)
\(\left\{{}\begin{matrix}\left|2x-3y\right|\ge0\forall x;y\\\left|2y-4z\right|\ge0\forall y;z\end{matrix}\right.\) \(\Rightarrow\left|2x-3y\right|+\left|2y-4z\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|2x-3y\right|=0\\\left|2y-4z\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=3y\\2y=4z\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{4}=\dfrac{z}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{6}=\dfrac{y}{4}\\\dfrac{y}{4}=\dfrac{z}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{2}=\dfrac{x+y+z}{6+4+2}=\dfrac{7}{12}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{12}.6=\dfrac{7}{2}\\y=\dfrac{7}{12}.4=\dfrac{7}{3}\\z=\dfrac{7}{12}.2=\dfrac{7}{6}\end{matrix}\right.\)
b)\(\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=0\)
\(\left\{{}\begin{matrix}\left|x-2\right|\ge0\\\left|x-3\right|\ge0\\\left|x-4\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|x-2\right|=0\\\left|x-3\right|=0\\\left|x-4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=3\\x=4\end{matrix}\right.\)
Vì \(2\ne3\ne4\) nên \(x\in\varnothing\)
c)
\(\left|x+1\right|+\left|x+2\right|+...+\left|x+8\right|+\left|x+9\right|\)
Với mọi \(x\ge0\) ta có:
\(\left\{{}\begin{matrix}\left|x+1\right|=x+1\\\left|x+2\right|=x+2\\\left|x+8\right|=x+8\\\left|x+9\right|=x+9\end{matrix}\right.\)\(\Leftrightarrow x+1+x+2+...+x+8+x+9=x-1\)
\(\Leftrightarrow9x+90=x-1\)
\(\Leftrightarrow9x=x-89\)
\(\Leftrightarrow-8x=89\)
\(\Leftrightarrow x=\dfrac{89}{-8}\left(KTM\right)\)
Với mọi \(x< 0\) ta có:
\(\left\{{}\begin{matrix}x+1=-x-1\\x+2=-x-2\\x+8=-x-8\\x+9=-x-9\end{matrix}\right.\) \(\Leftrightarrow\left(-x-1\right)+\left(-x-2\right)+...+\left(-x-8\right)+\left(-x-9\right)=x-1\)
\(\Leftrightarrow-9x-90=x-1\)
\(\Leftrightarrow-9x=x+89\)
\(\Leftrightarrow-10x=89\)
\(\Leftrightarrow x=\dfrac{89}{-10}\left(TM\right)\)
d)\(\left|2x-3y\right|+\left|5y-2z\right|+\left|2z-6\right|=0\)
\(\left\{{}\begin{matrix}\left|2x-3y\right|\ge0\\ \left|5y-2z\right|\ge0\\ \left|2z-6\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|2x-3y\right|+\left|5y-2z\right|+\left|2z-6\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|2x-3y\right|=0\\\left|5y-2z\right|=0\\\left|2z-6\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}z=3\\y=\dfrac{6}{5}\\x=\dfrac{9}{5}\end{matrix}\right.\)
a) \(2-\left|\frac{3}{2}x-\frac{1}{4}\right|=\left|-\frac{5}{4}\right|\)
\(\Leftrightarrow\left|\frac{3}{2}x-\frac{1}{4}\right|=\frac{3}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{3}{2}x-\frac{1}{4}=\frac{3}{4}\\\frac{3}{2}x-\frac{1}{4}=-\frac{3}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3}{2}x=1\\\frac{3}{2}x=-\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{1}{3}\end{cases}}\)
b) \(\left|\frac{7}{8}x+\frac{5}{6}\right|-\left|\frac{1}{2}x+5\right|=0\)
\(\Leftrightarrow\left|\frac{7}{8}x+\frac{5}{6}\right|=\left|\frac{1}{2}x+5\right|\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{7}{8}x+\frac{5}{6}=\frac{1}{2}x+5\\\frac{7}{8}x+\frac{5}{6}=-\frac{1}{2}x-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3}{8}x=\frac{25}{6}\\\frac{11}{8}x=-\frac{35}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{100}{9}\\x=-\frac{140}{33}\end{cases}}\)
c) \(\left|7-x\right|=5x+1\)
\(\Leftrightarrow\orbr{\begin{cases}7-x=5x+1\\x-7=5x+1\end{cases}}\Leftrightarrow\orbr{\begin{cases}6x=6\\4x=-8\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
d) \(\left|x-y+2\right|+\left|2y+1\right|\ge0\)
Mà theo đề \(\left|x-y+2\right|+\left|2y+1\right|\le0\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|x-y+2\right|=0\\\left|2y+1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=-\frac{1}{2}\end{cases}}\)
e) \(\left|\left|2x-1\right|+\frac{1}{2}\right|=\frac{4}{5}\)
\(\Leftrightarrow\orbr{\begin{cases}\left|2x-1\right|+\frac{1}{2}=\frac{4}{5}\\\left|2x-1\right|+\frac{1}{2}=-\frac{4}{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left|2x-1\right|=\frac{3}{10}\\\left|2x-1\right|=-\frac{13}{10}\left(vl\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x-1=\frac{3}{10}\\2x-1=-\frac{3}{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{13}{20}\\x=\frac{7}{20}\end{cases}}\)
1. Áp dụng TCDTSBN ta có:
$\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+5}{6}=\frac{x-1+(y-2)-(z+5)}{3+4-6}$
$=\frac{x+y-z-8}{1}=\frac{8-8}{1}=0$
$\Rightarrow x-1=y-2=z+5=0$
$\Rightarrow x=1; y=2; z=-5$
2.
Có:
$\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4z+20}{24}$
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
$\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4z+20}{24}=\frac{2x+2+3y+9+4z+20}{4+12+24}=\frac{2x+3y+4z+31}{40}=\frac{9+31}{40}=1$
Suy ra:
$x+1=2.1=2\Rightarrow x=1$
$y+3=1.4=4\Rightarrow y=1$
$z+5=6.1=6\Rightarrow z=1$
$