K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

nhân 2 vào amgm phá căn rồi nesbit

13 tháng 7 2019

\(A=\sum\frac{2x}{2\sqrt{y+z-4}}\ge\sum\frac{4x}{y+z}=4\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\ge6\)

27 tháng 2 2020

ĐK:...

\(\frac{2x}{2.3\sqrt{x+2y-1}-8}+\frac{2y}{2.3.\sqrt{y+2z-1}-8}+\frac{2z}{2.3.\sqrt{z+2x-1}-8}\)nhân với 2 cả tử và mẫu

\(\ge\frac{2x}{x+2y-1+9-8}+\frac{2y}{y+2z-1+9-8}+\frac{2z}{z+2x-1+9-8}\)cô  - si

\(=\frac{2x}{x+2y}+\frac{2y}{y+2z}+\frac{2z}{z+2x}\)

\(=\frac{2x^2}{x^2+2xy}+\frac{2y^2}{y^2+2zy}+\frac{2z^2}{z^2+2zx}\)

\(\ge2.\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=2\)

Dấu "=" xảy ra <=> x = y = z =10/3

28 tháng 2 2020

cảm ơn bạn

NV
30 tháng 5 2019

\(\frac{x}{\sqrt{y+z-4}}=\frac{2x}{2\sqrt{y+z-4}}\ge\frac{2x}{\frac{4+y+z-4}{2}}=\frac{4x}{y+z}\)

Tương tự và cộng lại ta có: \(P\ge4\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\)

\(\Rightarrow P\ge4\left(\frac{x^2}{xz+xz}+\frac{y^2}{xy+yz}+\frac{z^2}{xz+yz}\right)\ge\frac{4\left(x+y+z\right)^2}{2\left(xy+xz+yz\right)}\ge\frac{2\left(x+y+z\right)^2}{\frac{\left(x+y+z\right)^2}{3}}=6\)

\(\Rightarrow P_{min}=6\) khi \(x=y=z=4\)

22 tháng 5 2020

Ta có: \(x^2\left(y+z\right)\ge x^2.2\sqrt{yz}=2\sqrt{x^4}.\sqrt{\frac{1}{x}}=2x\sqrt{x}\)(Áp dụng BĐT Cô - si cho 2 số dương y,z và sử dụng giả thiết xyz = 1)

Hoàn toàn tương tự: \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2\left(x+y\right)\ge2z\sqrt{z}\)

Do đó \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)

\(\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(a=x\sqrt{x}+2y\sqrt{y}\)\(b=y\sqrt{y}+2z\sqrt{z}\)\(c=z\sqrt{z}+2x\sqrt{x}\)

Suy ra: \(x\sqrt{x}=\frac{4c+a-2b}{9}\)\(y\sqrt{y}=\frac{4a+b-2c}{9}\)\(z\sqrt{z}=\frac{4b+c-2a}{9}\)

Do đó \(P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{c}+\frac{4b+c-2a}{a}\right)\)

\(=\frac{2}{9}\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\)

\(\ge\frac{2}{9}\left[4.3\sqrt[3]{\frac{c}{b}.\frac{a}{c}.\frac{b}{a}}+3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}-6\right]\)(Áp dụng BĐT Cô - si cho 3 số dương)

\(=\frac{2}{9}\left[4.3+3-6\right]=2\)

Vậy \(P\ge2\)

Đẳng thức xảy ra khi x = y = z = 1

30 tháng 5 2020

Ta có: \(3\sqrt{x+2y-1}=\sqrt{9\left(x+2y-1\right)}\le\frac{9+x+2y-1}{2}\)

\(=\frac{x+2y}{2}+4\Leftrightarrow3\sqrt{x+2y-1}-4\le\frac{x+2y}{2}\)(1)

Tương tự ta có: \(3\sqrt{y+2z-1}\le\frac{y+2z}{2}\left(2\right);3\sqrt{z+2x-1}\le\frac{z+2x}{2}\left(3\right)\)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được:

\(T=\frac{x}{3\sqrt{x+2y-1}-4}+\frac{y}{3\sqrt{y+2z-1}-4}+\frac{z}{3\sqrt{z+2x-1}-4}\)

\(\ge\frac{2x}{x+2y}+\frac{2y}{y+2z}+\frac{2z}{z+2x}\)\(=2\left(\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2zx}\right)\)

\(\ge2.\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=2.\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=2\)(Theo BĐT Bunhiacopxki dạng phân thức)

Đẳng thức xảy ra khi \(x=y=z=\frac{10}{3}\)

27 tháng 2 2020

ai đó trả lời câu hỏi này đi

22 tháng 12 2018

Gọi \(T=...\)

\(T+3=\frac{\sqrt{x}}{\sqrt{y}+\sqrt{z}}+1+\frac{\sqrt{y}}{\sqrt{z}+\sqrt{x}}+1+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}}+1\)

\(T+3=\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{z}+\sqrt{x}}\right)\)

\(\ge\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right).\frac{\left(1+1+1\right)^2}{2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}=\frac{9}{2}\)\(\Rightarrow\)\(T\ge\frac{9}{2}-3=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)

... 

22 tháng 12 2018

Đặt \(\hept{\begin{cases}\sqrt{x}=a\\\sqrt{y}=b\\\sqrt{z}=c\end{cases}\left(a,b,c>0\right)}\)

Đặt \(P=\frac{\sqrt{x}}{\sqrt{y}+\sqrt{z}}+\frac{\sqrt{y}}{\sqrt{z}+\sqrt{x}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}}\)

\(\Rightarrow P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(\Rightarrow P+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\)

\(P+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\)

\(P+3=\frac{a}{b+c}+\frac{b+c}{b+c}+\frac{b}{c+a}+\frac{c+a}{c+a}+\frac{c}{a+b}+\frac{a+b}{a+b}\)

\(2\left(P+3\right)=2.\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

\(2\left(P+3\right)=\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

Áp dụng BĐT AM-GM ta có:

\(2\left(P+3\right)\ge3.\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.3.\sqrt[3]{\frac{1}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}}=9.\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.\frac{1}{\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=9\)

\(\left(\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ne0\right)\)

\(\Leftrightarrow P+3\ge4,5\)

\(\Leftrightarrow P\ge1,5\)

\(P=1,5\Leftrightarrow a=b=c\Leftrightarrow\sqrt{x}=\sqrt{y}=\sqrt{z}\Leftrightarrow x=y=z\)

Vậy \(P_{min}=1,5\Leftrightarrow x=y=z\)