Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian vòi thứ nhất chảy một mình đầy bể là x ( giờ, x > 6)
thời gian voi thứ hai chảy một mình đầy bể là y ( giờ, y > 6)
Suy ra một giờ vòi thứ nhất chảy được \(\frac{1}{x}\)(bể)
một giờ vòi thứ hai chảy được \(\frac{1}{y}\)(bể)
*)Cả hai vòi cùng chảy vào một bể không có nước thì sau 6 giờ bể đầy
=> Một giờ cả hai vòi chày được \(\frac{1}{6}\)(bể)
Do đó ta có phương trình: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{6}\)(1)
*)Vòi thứ nhất chảy trong 2 giờ được: \(\frac{2}{x}\)(bể)
Vòi thứ hai chảy trong 3 giờ được: \(\frac{3}{y}\)(bể)
Khi đó hai vòi chày được 1/2 bể nên ta có: \(\frac{2}{x}+\frac{3}{y}=\frac{1}{2}\)(2)
Từ (1) và (2) ta có hệ phương trình:
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{6}\\\frac{2}{x}+\frac{3}{y}=\frac{1}{2}\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{2}{x}+\frac{2}{y}=\frac{1}{3}\\\frac{2}{x}+\frac{3}{y}=\frac{1}{2}\end{cases}}\)
=> \(\frac{1}{y}=\frac{1}{6}\)(sai đề rồi nhé)
Gọi thời gian vòi 1 và vòi 2 chảy một mình đầy bể lần lượt là x và y (h) (ĐK: x, y>0�, �>0).
Mỗi giờ vòi 1 chảy được 1x1� bể và vòi 2 chảy được 1y1� bể.
Cả 2 vòi cùng chảy trong 6 giờ thì đầy bể nên mỗi giờ cả hai vòi cùng chảy được 1616 bể, ta có phương trình 1x+1y=16(1)1�+1�=16(1)
Trong 2 giờ vòi 1 chảy được 2x2� bể, trong 3 giờ vòi 2 chảy được 3y3� bể.
Nếu để riêng vòi thứ nhất chảy trong 2 giờ, sau đó đóng lại va mở vòi thứ hai chảy tiếp trong 3 giờ nữa thì được 2525 bể nên ta có phương trình 2x+3y=25(2)2�+3�=25(2)
Từ (1)(1) và (2)(2) ta có hệ
{1x+1y=162x+3y=25⇔{2x+2y=132x+3y=25⇔{1y=1151x=110⇔{x=10y=15(tm){1�+1�=162�+3�=25⇔{2�+2�=132�+3�=25⇔{1�=1151�=110⇔{�=10�=15(��)
Vậy thời gian vòi 1 và vòi 2 chảy một mình đầy bể lần lượt là 10 giờ và 15 giờ.
Chọn D
Gọi thời gian mà vòi 1 chảy 1 mình đầy bể là x, vòi 2 chảy 1 mình đầy bể là y(x,y>0, đơn vị là h). Theo đề bài ta có:
1 h thì vòi 1 chảy được là \(\dfrac{1}{x}\) (bể); 1 h vòi 2 chảy được là \(\dfrac{1}{y}\) (bể)
Vì 2 vòi cùng chảy vào 1 bể ko có nước thì 6h đầy bể nên ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)(1)
Nếu vòi 1 chảy trong 2h và vòi 2 chảy trong 3 h thì được \(\dfrac{2}{5}h\) nên ta có phương trình: \(\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{2}{5}\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\left(1\right)\\\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{2}{5}\left(2\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{2}{y}=\dfrac{1}{3}\left(3\right)\\\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{2}{5}\left(2\right)\end{matrix}\right.\)
Trừ từng vế của (2) cho (3) ta được:
\(\dfrac{1}{y}=\dfrac{2}{5}-\dfrac{1}{3}\Leftrightarrow\dfrac{1}{y}=\dfrac{1}{15}\Rightarrow y=15\) Thay vào (1) ta được:
\(\dfrac{1}{x}+\dfrac{1}{15}=\dfrac{1}{6}\Leftrightarrow\dfrac{1}{x}=\dfrac{1}{6}-\dfrac{1}{15}=\dfrac{5-2}{30}=\dfrac{3}{30}=\dfrac{1}{10}\Rightarrow x=10\)
Vậy ...
II. Gọi x, y lần lượt là thời gian vòi thứ nhất và vòi thứ hai chảy riêng để đầy bể. Điều kiện: x>0, y>0
- Trong 1 giờ: - Vòi 1 chảy được: \(\frac{1}{x}\) (Bể)
- Vòi 2 chảy được: \(\frac{1}{y}\) (bể) Đổi: 3 giờ 36 phút = 18/5 giờ.
- cả hai vòi chảy được: 5/18 (bể). Theo đề bài ta có phương trình: 1/x + 1/y = 5/18 (1)
- Trong 2 giờ vòi 1 chảy được: 2/x (bể). Trong 6 giờ vòi hai chảy được: 6/y (bể).
Theo đề bài ta có phương trình: 2/x + 6/y = 1 (2).
Từ (1) và (2) ta có hệ phương trình: 1/x+ 1/y = 5/18
2/x + 6/y = 1. Giải hệ phương trình trên bằng cách đặt ẩn phụ ta được: x= 6 y= 9. Vậy thời gian vòi 1 và 2 chảy riêng để đầy bể lần lượt là 6 giờ và 9 giờ.
Gọi một giờ vòi một chảy đc a phần bể
Vòi 2 chảy được b phần bể
Ta có
\(\left\{{}\begin{matrix}3a+3b=1\\2a+4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6a+6b=2\\6a+12b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6b=1\\3a+3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{3}\\a=\dfrac{1}{3}\end{matrix}\right.\)
Vậy vòi 1 và vòi 2 đều chảy một mình 6h thì đẩy bể
Đổi 3 giờ 30 phút = 3,5 giờ
Cứ 1 giờ hai vòi chảy được: 1: 3,5 = \(\dfrac{2}{7}\)(bể)
2 giờ hai vòi cùng chảy được: \(\dfrac{2}{7}\) \(\times\) 2 = \(\dfrac{4}{7}\) (bể)
Trong 1 giờ vòi 1 chảy được: \(\dfrac{4}{5}\) - \(\dfrac{4}{7}\) = \(\dfrac{8}{35}\) (bể)
Vòi 1 chảy đầy bể sau: 1 : \(\dfrac{8}{35}\) = \(\dfrac{35}{8}\) (giờ)
Vòi 2 chảy một mình trong 1 giờ được: \(\dfrac{2}{7}\) - \(\dfrac{8}{35}\) = \(\dfrac{2}{35}\)(bể)
Vòi 2 chảy đầy bể sau: 1 : \(\dfrac{2}{35}\) = \(\dfrac{35}{2}\) (giờ)
Kết luận:.....
Gọi x (h), y(h) lần lượt là thời gian chảy một mình đầy bể của vòi thứ nhất và vòi thứ hai (x, y > 0)
3h 30 phút = 3,5 h
Cả hai vòi cùng chảy trong 1 giờ:
1/x + 1/y = 1/3,5 (1)
Vòi thứ nhất chảy 3h, vòi thứ hai chảy 2h được 4/5 bể nên:
3/x + 2/y = 4/5 (2)
Đặt u = 1/x; v = 1/y
(1) ⇔ u + v = 2/7
⇔ u = 2/7 - v
(2) ⇔ 3u + 2v = 4/5 (3)
Thế u = 2/7 - v vào (3) ta có:
(3) ⇔ 3.(2/7 - v) + 2v = 4/5
⇔ 6/7 - 3v + 2v = 4/5
⇔ -v = 4/5 - 6/7
⇔ -v = -2/35
⇔ v = 2/35
Thế v = 2/35 vào u = 2/7 - v, ta được:
u = 2/7 - 2/35
⇔ u = 8/35
*) Với u = 8/35
⇔ 1/x = 8/35
⇔ x = 35/8 (nhận)
*) Với v = 2/35
⇔ 1/y = 2/35
⇔ y = 35/2 (nhận)
Vậy vòi thứ nhất chảy một mình trong 35/8 h thì đầy bể
Vòi thứ hai chảy một mình trong 35/2 h thì đầy bể
Gọi thời vòi 1 vòi 2 chảy đầy bể lần lượt là a ; b ( a ; b > 0 )
\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{6}\\\dfrac{2}{a}+\dfrac{3}{b}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{10}\\\dfrac{1}{b}=\dfrac{1}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=10\\b=15\end{matrix}\right.\left(tm\right)\)
Đổi 3h36 phút = \(3,6h\)
Gọi thời gian mà vòi thứ 1 chảy 1 mình đầy bể là x ( giờ )\(\left(x>3,6\right)\)
Gọi thời gian mà vòi thứ 2 chảy 1 mình đầy bể là y ( giờ ) \(\left(y>3,6\right)\)
1 giờ vòi 1 chảy được 1/x ( bể )
1 giờ vòi 2 chảy được 1/y ( bể )
Cả 2 vòi 1 giờ chảy được: \(\frac{1}{3,6}\left(h\right)\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{3,6}\left(1\right)\)
Vì nếu hai vòi chảy trong 1,5h rồi khóa vòi 1, vòi 2 chảy trong 3h nữa thì đầy bể nên ta có:
\(\frac{1,5}{x}+\frac{1,5}{y}+\frac{3}{y}=1\left(2\right)\)
Từ (1) và (2) ta có hệ pt: \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{3,6}\\\frac{1,5}{x}+\frac{4,5}{y}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1,5}{x}+\frac{1,5}{y}=\frac{5}{12}\\\frac{1,5}{x}+\frac{4,5}{y}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{3}{y}=\frac{7}{12}\\\frac{1,5}{x}+\frac{4,5}{y}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{36}{7}\left(tm\right)\\x=12\left(tm\right)\end{cases}}\)
Vậy vòi 1 chảy 1 mình trong 12h đầy bể, vòi 2 chảy 1 mình trong 36/7 giờ thì đầy bể
( đúng ko ta )