K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

Ta có: 

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

....................

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)

\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}< \frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)

                                           \(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)

                                            \(=2-\frac{1}{n}\)

                                                      đpcm

Tham khảo nhé~

13 tháng 11 2018

 \(VT< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n-1}=2-\frac{1}{n}\)

13 tháng 11 2018

\(\frac{1}{1^2}=1,\frac{1}{2^2}< \frac{1}{1.2},\frac{1}{3^2}< \frac{1}{2.3},.....,\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)

\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=2-\frac{1}{n}\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}< 2-\frac{1}{n^2}\)

p/s: bài này giống vs toán lớp 6 

3 tháng 8 2016

Tôi cũng là của FC Real Madrid ở Hà Nam.

Chúng mình kết bạn nhé.hihi.