Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lấy n = 2 => 202 + 62 + 32-1 = 439 không chia hết cho 323
=> đề sai
n chẵn => n=2k ( k thuộc N)
\(A=n^3+4n=\left(2k\right)^3+4\left(2k\right)=8k^3+8k=8k\left(k^2+1\right)⋮16\)
- Vì n là số tự nhiên lẻ
=> 24n có tận cùng là 24
=> 24n + 1 có tận cùng là 24 + 1 = 25
Vì số chia hết cho 25 là số có chữ số tận cùng là 25 => 24n + 1 chia hết cho 25 (1)
- Vì 24 : 23 = 1 (dư 1)
=> 24n : 23 cũng sẽ dư 1
=> 24n + 1 : 23 sẽ có dư là 2
=> 24n + 1 sẽ không chia hết cho 23 (2)
Từ (1) và (2) suy ra: 24n + 1 chia hết cho 25 nhưng ko chia hết cho 23 với n là số tự nhiên lẻ
Ta có :
\(A=n^5-5n^3+4n=n\left(n+1\right)=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)
chia hết cho \(2,3,4,5.\)
b ) Cần chứng minh
\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1,n\in N\)*
là một số chính phương .
Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
Đặt : \(n^2+3n=y\) thì
\(A=y\left(y+2\right)+1=y^2+2y+1\left(y+1\right)^2\)
\(\Rightarrow A=\left(n^2+3n+1\right)^2,n\in N\)*
a) Gọi tích ba số tự nhiên liên tiếp là n(n+1)(n+2)
=> Có 3 TH
TH1: n chia hết cho 3 => n(n+1)(n+2) chia hết cho 3
TH2: n = 3k + 1 => n+2 chia hết cho 3 => n(n+1)(n+2) chia hết cho 3
TH3: n = 3k+2 => n + 1 chia hết cho 3 => n(n+1)(n+2) chia hết cho 3
=> Tích 3 số tự nhiên liên tiếp đầu chia hết cho 3
b)
Xét:
Nếu n lẻ thì n + 5 chẵn => (n+5)(n+12) chia hết cho 2
Nếu n chẵn thì n + 12 chẵn => (n+5)(n+12) chia hết cho 2
Vậy với mọi n thì (n+5)(n+12) chia hết cho 2
http://www.olm.vn/hoi-dap/question/77071.html
n = 2
=> 20^2 + 16^2 - 3^2 - 1
= 400 + 256 - 9 -1
= 656 - 9 -1
= 6 4 6 chia hết cho 323