Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/ Theo đề bài thì ta có:
\(\left\{{}\begin{matrix}f\left(1\right)=f\left(-1\right)\\f\left(2\right)=f\left(-2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_4+a_3+a_2+a_1+a_0=a_4-a_3+a_2-a_1+a_0\\16a_4+8a_3+4a_2+2a_1+a_0=16a_4-8a_3+4a_2-2a_1+a_0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_3+a_1=0\\4a_3+a_1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_3=0\\a_1=0\end{matrix}\right.\)
Ta có: \(f\left(x\right)-f\left(-x\right)=a_4x^4+a_3x^3+a_2x^2+a_1x+a_0-\left(a_4x^4-a_3x^3+a_2x^2-a_1x+a_0\right)\)
\(=2a_3x^3+2a_1x=0\)
Vậy \(f\left(x\right)=f\left(-x\right)\)với mọi x
a/ Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{2}\)
\(\Rightarrow c-a=-2\left(a-b\right)=-2\left(b-c\right)\)
Thế vào B ta được
\(B=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
\(=4\left(a-b\right)\left(b-c\right)-\left[-2\left(a-b\right).\left(-2\right).\left(b-c\right)\right]\)
\(=4\left(a-b\right)\left(b-c\right)-4\left(a-b\right)\left(b-c\right)=0\)
cho đa thức f(x)=a4x4+a3x3+a2x2+a1x+a0
biết rằng f(1)=f(-1);f(2)=f(-2)
chứng minh f(x)=f(-x) với mọi x
f(1) = f(-1)
=> a4 + a3 + a2 + a1 + a0 = a4 - a3 + a2 - a1 + a0
=> a3 + a1 = - a3 - a1
=> a3 = a1 = 0 hoặc a3 = -a1 (1)
f(2) = f(-2)
=> 16a4 + 8a3 + 4a2 + 2a1 + a0 = 16a4 - 8a3 + 4a2 - 2a1 + a0
=> 8a3 + 2a1 = - 8a3 - 2a1
=> a3 = a1 = 0 hoặc 4a3 = -a1 (2)
(1) và (2) => a3 = a1 = 0
=> f(x) = a4x4 + a2x2+ a0
x4 và x2 là số mũ chẵn
=> x4 = (-x)4 và x2 = (-x)2
=> f(x) = f(-x) với mọi x
Theo mình biết thì cái này là hàm số chẵn.