Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chỉ cần xét biệt thức của phương trình \(x^2+ax+a^2-6=0\)
\(\Delta=a^2-4\left(a^2-6\right)=24-3a^2\)
Ta thấy \(\Delta< 0\Leftrightarrow-2\sqrt{2}< a< 2\sqrt{2}\left(1\right)\)
Ta thấy cả 3 nghiệm của phương trình \(a^3=6\left(a+1\right)\) đều thỏa mãn (1).
Vậy ta đã chứng minh xong.
1. Ta chọn $x=3k;y=4k;z=5k$ với $k$ là số nguyên dương.
Khi này $x^2+y^2=25k^2 =z^2$. Tức có vô hạn nghiệm $(x;y;z)=(3k;4k;5k)$ với $k$ là số nguyên dương thỏa mãn
viết lại câu hỏi khác đi, đề không rõ ràng X với x rồi . lung tung, dung công cụ soạn thảo đi nha bạn
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
a)Ta có:
`\Delta'`
`=(m+1)^2-6m+4`
`=m^2+2m+1-6m+4`
`=m^2-4m+5`
`=(m-2)^2+1>=1>0(AA m)`
`=>`phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
Câu b đề không rõ :v
Cho pt x²+(a-1)x-6=0 a) Giải pt với a =6 b) Tìm a để pt có 2 nghiệm x1,x2 thoả mãn x1²+x2²-3x1.x2=34
a: \(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)
=>x=-6 hoặc x=1
lop 9 hoi qua so vs hoc sinh olm