Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 ) \(A=\left(\dfrac{2x^3+2}{x+1}-2x\right)\left(\dfrac{x^3-1}{x-1}+x\right)\)
\(\Leftrightarrow A=\left(\dfrac{2x^3+2-2x^2-2x}{x+1}\right)\left(x^2+2x+1\right)\)
\(\Leftrightarrow A=\left(\dfrac{\left(2x^2-2\right)\left(x-1\right)}{x+1}\right)\left(x+1\right)^2\)
\(\Leftrightarrow A=\left(\dfrac{2\left(x-1\right)\left(x+1\right)\left(x-1\right)}{x+1}\right)\left(x+1\right)^2\)
\(\Leftrightarrow A=2\left(x-1\right)^2\left(x+1\right)^2\ge0\forall x\)
Gọi A= n^5-5n^3+4n
Ta có : n^5-5n^3+4n
=n(n^4-5n^2+4)
=n(n^4-4n^2-n^2+4)
=n{(n^2-4)(n^2-1)}
= n(n+1)(n-1)(n+2)(n-2)
Vì A là 5 số tự nhiên liên tiếp nên A chia hết cho cả 2,3,4,5. Mà 2.3.4.5=120
=>A chia hết cho 120
\(M=\dfrac{a^2+1}{a}\Rightarrow M-\dfrac{10}{3}=\dfrac{a^2+1}{a}-\dfrac{10}{3}=\dfrac{3a^2-10a+3}{3a}=\dfrac{\left(3a-1\right)\left(a-3\right)}{3a}\)\(a\ge3\Rightarrow\left\{{}\begin{matrix}3a>0\\3a-1>0\\a-3\ge0\end{matrix}\right.\) \(\Rightarrow\dfrac{\left(3a-1\right)\left(a-3\right)}{3a}\ge0\)
\(\Rightarrow M-\dfrac{10}{3}\ge0\Rightarrow M\ge\dfrac{10}{3}\)
MIn M =10/3 khi x=3
Hiện câu 1 mih chưa giải đc
Đây là đ.a câu 2
\(\frac{4c}{4c+57}\ge\frac{1}{a+1}+\frac{35}{35+2b}\ge2\sqrt{\frac{35}{\left(a+1\right)\left(35+2b\right)}}\)(Cosi) (1)
Từ đề bài \(\Leftrightarrow\frac{1}{a+1}+\frac{35}{35+2b}\le1-\frac{57}{4c+57}\Leftrightarrow\frac{1}{a+1}+\frac{35}{35+2b}+\frac{57}{4c+57}\le1\) (*)
Từ (*) \(\Rightarrow1-\frac{1}{a+1}=\frac{a}{a+1}\ge\frac{35}{35+2b}+\frac{57}{4c+57}\ge2\sqrt{\frac{35.57}{\left(35+2b\right)\left(4c+57\right)}}\)(2)
Từ (*) \(\Rightarrow1-\frac{35}{35+2b}=\frac{2b}{35+2b}\ge\frac{1}{a+1}+\frac{35}{35+2b}\ge2\sqrt{\frac{35}{\left(a+1\right)\left(35+2b\right)}}\)(3)
Nhân vế với vế của (1);(2);(3) lại ta được :
\(\frac{4c.a.2b}{\left(4c+57\right)\left(a+1\right)\left(35+2b\right)}\ge8\sqrt{\frac{57.35.35.57}{\left(4c+57\right)^2\left(a+1\right)^2\left(35+2b\right)^2}}\)
\(\Leftrightarrow abc\ge35.57=1995\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{1}{a+1}=\frac{35}{35+2b}=\frac{57}{4c+57}\\abc=1995\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{2b}{35}=\frac{4c}{57}\\abc=1995\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=35\\c=\frac{57}{2}\end{cases}}\) Vậy \(MinA=1995\) tại \(a=2;b=35;c=\frac{57}{2}\)
Ta đã có: \(n\in N\)*
Chứng minh theo phương pháp quy nạp toán học:
Với \(n=1\) thì \(A=1^3+2^3+3^3=36⋮9\)
Giả sử mệnh đề đúng với \(n=k\)(giả thiết quy nạp) thì ta chứng minh mệnh đề cũng đúng với \(n=k+1\)
Với \(n=k+1\Rightarrow A=\left(k+1\right)^3+\left(k+2\right)^3+\left(k+3\right)^3\)
\(=(k^3+3k^2+3k+1+k^3+6k^2+12k+1+k^3)+9k^2+27k+27\)\(=k^3+\left(k+1\right)^3+\left(k+2\right)^3+9\left(k^2+3k+3\right)\)
Ta có: \(k^3+\left(k+1\right)^3+\left(k+2\right)^3⋮9\) hiên nhiên \(9\left(k^2+3k+3\right)⋮9\)
Từ đó suy ra A chia hết cho 9 (n \(\in N\)*)
Lời giải:
a)
$a+b+c=0\Leftrightarrow (a+b+c)^2=0$
$\Leftrightarrow a^2+b^2+c^2+2(ab+bc+ac)=0$
$\Rightarrow ab+bc+ac=-\frac{a^2+b^2+c^2}{2}\leq 0$
Mà $a^2\geq 0$
Do đó: $a^2(ab+bc+ac)\leq 0$
$\Leftrightarrow a^3b+a^2bc+a^3c\leq 0$ (đpcm)
Dấu "=" xảy ra khi $a=0$
b)
Từ ĐKĐB \(\Rightarrow \left\{\begin{matrix} a+b=(3c+3)\\ 4ab=9c^2\end{matrix}\right.\)
Ta biết rằng $(a+b)^2=(a-b)^2+4ab\geq 4ab$
$\Leftrightarrow (3c+3)^2\geq 9c^2$
$\Leftrightarrow (c+1)^2\geq c^2$
$\Leftrightarrow 2c+1\geq 0\Leftrightarrow c\geq \frac{-1}{2}$ (đpcm)
Vậy.......
A = (x - 1)(x + 2)(x + 3)(x + 6)
= (x2 + 6x - x - 6)(x2 + 3x + 2x + 6)
= (x2 + 5x - 6)(x2 + 5x + 6)
= (x2 + 5x)2 - 62 \(\ge\) -36
Dấu ''='' xảy ra khi x2 + 5x = 0 <=> x(x + 5) = 0 <=> \(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy Min A = -36 khi x = 0 hoặc x = -5