Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta làm bài tổng quát như sau:
Cho \(u_n=\left(2+\sqrt{3}\right)^n+\left(2-\sqrt{3}\right)^n\) chứng minh \(u_n\)là số tự nhiên chẵn với mọi n là số nguyên dương. (1)
Đặt \(\hept{\begin{cases}2+\sqrt{3}=x\\2-\sqrt{3}=y\end{cases}}\)
\(\Rightarrow u_n=x^n+y^n\)
\(\Rightarrow\hept{\begin{cases}x+y=4\\xy=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}u_1=4\\u_2=14\end{cases}}\)
Xét \(n=1;2\) thì (1) đúng.
Giả sử (1) đúng đến \(n=k\) .
Ta chứng minh (1) đúng với \(n=k+1\)
Ta có:
\(\Rightarrow u_{k+1}=x^{k+1}+y^{k+1}=\left(x+y\right)\left(x^k+y^k\right)-xy\left(x^{k-1}+y^{k-1}\right)=4u_k-u_{k-1}\) là số nguyên dương chẵn.
Vậy theo quy nạp ta có (1) đúng.
Áp dụng vào bài toán ta có điều phải chứng minh.
\(n\) chẵn thì \(A\) chẵn đúng không?
\(n\) lẻ thì \(n^2\) và \(5n\) là các số lẻ nên \(A\) cũng chẵn.
Vậy \(A\) là hợp số.
Nếu \(n\) lẻ thì \(A\) chẵn mà \(n\) chẵn thì \(A\) cũng chẵn. Hết!
đề mày tự nghĩ à ??? cái đề rẻ rách này mà cũng lớp 9 á ??
a=3 b=4
3^2+4^2=25
suy ra c=5
suy ra nó là số tự nhiên ??