Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\begin{cases}x^2-5x+6<0\\ax+4<0\end{cases}\)
bất phương trình đầu có nghiệm là 1 < x < 6
Xét a = 0 => bpt thứ hai vô nghiệm (4 < 0) => Hệ vô nghiệm
Xét a > 0 => bpt thứ hai có nghiệm là x < -4/a < 0 => kết hợp với 1 < x < 6 thì hệ vô nghiệm
Xét a < 0 => bpt thứ hai có nghiệm là x > -4/a. Kết hợp với 1 < x < 6 thì để hệ có nghiệm thì -4/a <6 => -4 > 6a => a < -4/6 = -2/3, thỏa mãn đk a <0
ĐS: a < -2/3
b) bpt thứ nhất có nghiệm là x > 1.
bpt thứ hai có dạng: (x - a)2 +1 - a2 < 0; (x - a)2 < a2 - 1
Nếu a2 - 1 < 0, tức là -1 < a < 1 thì bpt trên vô nghiệm,
Nếu a < -1 hoặc a > 1 thì bpt trên có nghiệm là \(-\sqrt{a^2-1}+a\le x\le\sqrt{a^2-1}+a\)
Kết hợp với nghiệm x > 1 thì để hệ có nghieemh ta phải có \(\sqrt{a^2+1}+a>1\) => \(\sqrt{a^2+1}>1-a\), nếu a>1 thì luôn đúng, còn nếu a < -1 thì a2 + 1 > 1 - 2a + a2 =>a >0 (mâu thuẫn với a < -1)
KL: với a > 1 thì hệ bpt có nghiệm
Mình giải mẫu pt đầu thôi nhé, những pt sau ttự.
1,\(x^4-\frac{1}{2}x^3-x^2-\frac{1}{2}x+1=0\)
Ta thấy x=0 ko là nghiệm.
Chia cả 2 vế cho x2 >0:
pt\(\Leftrightarrow x^2-\frac{1}{2}x-1-\frac{1}{2x}+\frac{1}{x^2}=0\)
Đặt \(t=x-\frac{1}{x}\left(t\in R\right)\)
\(\Rightarrow x^2+\frac{1}{x^2}=t^2+2\)
pt\(\Leftrightarrow t^2-\frac{1}{2}t+1=0\)(vô n0)
Vậy pt vô n0.
#Walker
f(x) = (m+1)x² - 2(m+1)x + 2m+3
♠ m = -1: f(x) = 0.x² - 0.x + 1 = 1 > 0 với mọi x nên f(x) ≥ 0 có nghiệm x thuộc R
♠ m # -1, có ∆' = (m+1)² - (m+1)(2m+3) = -(m+1)(m+2)
ta biện luận theo dấu của delta':
m│ -∞________ -2 _________ -1 ________ +∞
∆ │≈≈≈≈≈ - ≈≈≈≈ 0 ≈≈≈≈ + ≈≈≈≈ || ≈≈≈≈ - ≈≈≈≈≈≈
* nếu m < -2 => ∆' < 0, m+1 < 0 => f(x) < 0 với mọi x nên f(x) ≥ 0 vô nghiệm
* nếu m = -2 <=> ∆' = 0 và m+1 < 0 <=> f(x) ≤ 0 với mọi x thuộc R
=> f(x) ≥ 0 có nghiệm x = 2 (còn dính đc chổ có dấu "=" )
* -2 < m < -1 <=> ∆' > 0 ; f(x) có 2 lần đổi dấu => f(x) ≥ 0 có nghiệm
* nếu m > -1 => ∆' > 0 và m+1 > 0 => f(x) > 0 với mọi x => f(x) ≥ 0 có nghiệm
Tóm lại các trường hợp: bpt f(x) ≥ 0 có nghệm khi và chỉ khi m ≥ -2
~~~~~~~~~~
Cách khác: giải ngược lại ta tìm m để bpt f(x) ≥ 0 vô nghiệm
tức là f(x) < 0 với mọi x thuộc R
* nếu m = -1 thì như trên f(x) ≥ 0 có nghiêm
* nếu m # -1, f(x) < 0 với mọi x thuộc R khi và chỉ khi
{ ∆' < 0
{ m+1 < 0
<=> { m < -2 hoăc m > -1
----- { m < -1
<=> m < -2
Vậy bpt f(x) ≥ 0 có nghiệm khi và chỉ khi m ≥ -2
x2 = 24 = 42
x =4; -4
với đk x<0 => x = -4 là bn kim làm đ
Cho biểu thức A=x4 + x2 với những giá trị x thỏa mãn /x/ = 2 thì A=
Nhanh lên mọi ngừời mình đang thi
\(\left|x\right|=2\Rightarrow x=\begin{cases}2\\-2\end{cases}\)
Mà \(x^4,x^2\ge0\Rightarrow A=2^4+2^2=\left(-2\right)^4+\left(-2\right)^2=20\)
Vậy A=20
Đặt \(x^2-5x+4=A\)
\(A=x^2-5x+4=\left(x^2-2\times x\times\frac{5}{2}+\frac{25}{4}\right)-2,25\)
\(=\left(x-\frac{5}{2}\right)^2-2,25\)
Khi A < 0
\(\Rightarrow\left(x-\frac{5}{2}\right)^2< 2,25\)
\(\Leftrightarrow1< x< 4\)
Vậy khi 1 < x < 4 thì A < 0
thank you