K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2016

x=-4

30 tháng 12 2016

x2 = 24 = 42

x =4; -4

với đk x<0 => x = -4 là bn kim làm đ

4 tháng 7 2020

Để phương trình có 2 nghiệm phân biệt :

\(\Delta>0< =>\left(-2\right)^2-4\left(-m\right)>0\)

\(< =>4+4m>0\)

\(< =>4m>-4\)

\(< =>m>-1\)

8 tháng 10 2016

\(\left|x\right|=2\Rightarrow x=\begin{cases}2\\-2\end{cases}\)

Mà \(x^4,x^2\ge0\Rightarrow A=2^4+2^2=\left(-2\right)^4+\left(-2\right)^2=20\)

Vậy A=20

22 tháng 2 2016

a) \(\begin{cases}x^2-5x+6<0\\ax+4<0\end{cases}\)

bất phương trình đầu có nghiệm là 1 < x < 6

Xét a = 0 => bpt thứ hai vô nghiệm (4 < 0) => Hệ vô nghiệm

Xét a > 0 => bpt thứ hai có nghiệm là x < -4/a < 0 => kết hợp với 1 < x < 6 thì hệ vô nghiệm

Xét a < 0 => bpt thứ hai có nghiệm là x > -4/a. Kết hợp với 1 < x < 6 thì để hệ có nghiệm thì -4/a <6 => -4 > 6a => a < -4/6 = -2/3, thỏa mãn đk a <0

ĐS: a < -2/3

b) bpt thứ nhất có nghiệm là x > 1.

bpt thứ hai có dạng: (x - a)2 +1 - a2 < 0; (x - a)2 < a2 - 1

Nếu a2 - 1 < 0, tức là -1 < a < 1 thì bpt trên vô nghiệm,

Nếu a < -1 hoặc a > 1 thì bpt trên có nghiệm là \(-\sqrt{a^2-1}+a\le x\le\sqrt{a^2-1}+a\)

Kết hợp với nghiệm x > 1 thì để hệ có nghieemh ta phải có \(\sqrt{a^2+1}+a>1\) => \(\sqrt{a^2+1}>1-a\), nếu a>1 thì luôn đúng, còn nếu a < -1 thì a2 + 1 > 1 - 2a + a2 =>a >0 (mâu thuẫn với a < -1)

KL: với a > 1 thì hệ bpt có nghiệm

3 tháng 1 2017

Đặt \(x^2-5x+4=A\)

\(A=x^2-5x+4=\left(x^2-2\times x\times\frac{5}{2}+\frac{25}{4}\right)-2,25\)

\(=\left(x-\frac{5}{2}\right)^2-2,25\)

Khi A < 0

\(\Rightarrow\left(x-\frac{5}{2}\right)^2< 2,25\)

\(\Leftrightarrow1< x< 4\)

Vậy khi 1 < x < 4 thì A < 0

4 tháng 1 2017

thank youhahayeuvuihihi

24 tháng 5 2020

\(P=\sqrt{x^4+x^2y^2}+x^2=\sqrt{x^4+\frac{1}{x^2}}+x^2\)

Ta có: \(x^4+\frac{1}{x^2}=x^4+\frac{1}{8x^2}+\frac{1}{8x^2}+...+\frac{1}{8x^2}\ge9\sqrt[9]{x^4.\left(\frac{1}{8x^2}\right)^8}\)

\(=9\sqrt[9]{\frac{1}{8^8.x^{12}}}\)

=> \(P=3\sqrt[18]{\frac{1}{8^8.x^{12}}}+x^2\)

\(=\sqrt[18]{\frac{1}{8^8x^{12}}}+\sqrt[18]{\frac{1}{8^8x^{12}}}+\sqrt[18]{\frac{1}{8^8x^{12}}}+x^2\)

\(\ge4\sqrt[4]{\left(\sqrt[18]{\frac{1}{8^8x^{12}}}\right)^3.x^2}\)

\(=4.\left(\frac{1}{8^{\frac{1}{3}}.x^{\frac{1}{2}}}\right).x^2=2\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x^4=\frac{1}{8x^2}\\x^2=\sqrt[8]{\frac{1}{8^8x^{12}}}\end{cases}}\)<=> x^2 = 1/2 khi đó y = 2 , x = \(\frac{1}{\sqrt{2}}\)

Vậy GTNN của P = 2.