Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
P T ⇔ log 2 2 x 2 - x + 2 m - 4 m 2 + log 2 x 2 + m x - 2 m 2 = 0
⇔ 2 x 2 - x + 2 m - 4 m 2 = x 2 + m x - 2 m 2 > 0
Điều kiện để pt đã cho có 2 nghiệm
Do đó
S = - 1 ; 0 ∪ 2 5 ; 1 2 ⇒ A = - 1 + 2 + 1 = 2
Chọn A.
Nhận xét:
Đặt
Xét hàm số xác định và liên tục trên
Ta có: . Cho f’(t) = 0 khi t = 1 hoặc t = -1
Bảng biến thiên:
Dựa vào bảng biến thiên:
+ nếu m < 2 thì phương trình (1’) vô nghiệm => pt (1) vô nghiệm.
+ nếu m = 2 thì phương trình (1’) có đúng một nghiệm t = 1 nên pt có đúng một nghiệm
+ nếu m > 2 thì phương trình có hai nghiệm phân biệt => pt(1) có hai nghiệm phân biệt.
Vậy với m> 2 thì phương trình đã cho có 2 nghiệm phân biệt.
+ Ta có y = f ( x ) = f ( x ) , f ( x ) ≥ 0 - f ( x ) , f ( x ) < 0 . Từ đó suy ra cách vẽ đồ thị hàm số (C) như sau:
- Giữ nguyên đồ thị y= f (x) phía trên trục hoành.
- Lấy đối xứng phần đồ thị y= f(x) phía dưới trục hoành qua trục hoành ( bỏ phần dưới ).
Kết hợp hai phần ta được đồ thị hàm số y = f ( x ) như hình vẽ.
Phương trình f ( x ) = m là phương trình hoành độ giao điểm của đồ thị hàm số y = f ( x ) và đường thẳng
y= m (cùng phương với trục hoành).
Dựa vào đồ thị, ta có ycbt
Chọn D.